初中数学

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O BC 于点 D DE AC BA 的延长线于点 E ,交 AC 于点 F

(1)求证: DE O 的切线;

(2)若 AC = 6 tan E = 3 4 ,求 AF 的长.

来源:2021年四川省资阳市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 3 CB = 2 ,点 E 为线段 AB 上的动点,将 ΔCBE 沿 CE 折叠,使点 B 落在矩形内点 F 处,下列结论正确的是  (写出所有正确结论的序号)

①当 E 为线段 AB 中点时, AF / / CE

②当 E 为线段 AB 中点时, AF = 9 5

③当 A F C 三点共线时, AE = 13 2 13 3

④当 A F C 三点共线时, ΔCEF ΔAEF

来源:2018年四川省宜宾市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中,点 D E F 分别在 AB BC AC 边上, DE / / AC EF / / AB

(1)求证: ΔBDE ΔEFC

(2)设 AF FC = 1 2

①若 BC = 12 ,求线段 BE 的长;

②若 ΔEFC 的面积是20,求 ΔABC 的面积.

来源:2020年浙江省杭州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,过 O 外一点 P O 的切线 PA O 于点 A ,连接 PO 并延长,与 O 交于 C D 两点, M 是半圆 CD 的中点,连接 AM CD 于点 N ,连接 AC CM

(1)求证: C M 2 = MN MA

(2)若 P = 30 ° PC = 2 ,求 CM 的长.

来源:2018年四川省遂宁市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,直角坐标系中,以5为半径的动圆的圆心 A 沿 x 轴移动,当 A 与直线 l : y = 5 12 x 只有一个公共点时,点 A 的坐标为 (    )

A.

( - 12 , 0 )

B.

( - 13 , 0 )

C.

( ± 12 , 0 )

D.

( ± 13 , 0 )

来源:2021年湖南省娄底市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,点 A 的坐标为 ( 0 , 1 ) ,点 B x 轴正半轴上的一动点,以 AB 为边作 Rt Δ ABC ,使 BAC = 90 ° ACB = 30 ° ,设点 B 的横坐标为 x ,点 C 的纵坐标为 y ,能表示 y x 的函数关系的图象大致是 (    )

A.B.

C.D.

来源:2018年四川省攀枝花市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, C 为线段 AB 外一点.

(1)求作四边形 ABCD ,使得 CD / / AB ,且 CD = 2 AB ;(要求:尺规作图,不写作法,保留作图痕迹)

(2)在(1)的四边形 ABCD 中, AC BD 相交于点 P AB CD 的中点分别为 M N ,求证: M P N 三点在同一条直线上.

来源:2020年福建省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, O ΔABC 的外接圆,点 O BC 边上, BAC 的平分线交 O 于点 D ,连接 BD CD ,过点 D O 的切线与 AC 的延长线交于点 P

(1)求证: DP / / BC

(2)求证: ΔABD ΔDCP

(3)当 AB = 5 cm AC = 12 cm 时,求线段 PC 的长.

来源:2021年山东省枣庄市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

由四个全等的直角三角形和一个小正方形组成的大正方形 ABCD 如图所示.过点 D DF 的垂线交小正方形对角线 EF 的延长线于点 G ,连结 CG ,延长 BE CG 于点 H .若 AE = 2 BE ,则 CG BH 的值为 (    )

A.

3 2

B.

2

C.

3 10 7

D.

3 5 5

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, CA = CB BC A 相切于点 D ,过点 A AC 的垂线交 CB 的延长线于点 E ,交 A 于点 F ,连结 BF

(1)求证: BF A 的切线.

(2)若 BE = 5 AC = 20 ,求 EF 的长.

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,弦 CD AB 于点 F OE AC 于点 E ,若 OE = 3 OB = 5 ,则 CD 的长度是 (    )

A.

9.6

B.

4 5

C.

5 3

D.

10

来源:2021年四川省自贡市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图所示,已知在梯形 ABCD 中, AD / / BC S ΔABD S ΔBCD = 1 2 ,则 S ΔBOC S ΔBCD =   

来源:2021年上海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, AC BD 交于点 O OA = OD ABO = DCO E BC 延长线上一点,过点 E EF / / CD ,交 BD 的延长线于点 F

(1)求证 ΔAOB ΔDOC

(2)若 AB = 2 BC = 3 CE = 1 ,求 EF 的长.

来源:2021年江苏省南京市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° ,以其三边为边向外作正方形,过点 C CR FG 于点 R ,再过点 C PQ CR 分别交边 DE BH 于点 P Q .若 QH = 2 PE PQ = 15 ,则 CR 的长为 (    )

A.14B.15C. 8 3 D. 6 5

来源:2020年浙江省温州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

定义:有三个内角相等的四边形叫三等角四边形.

(1)三等角四边形 ABCD 中, A = B = C ,求 A 的取值范围;

(2)如图,折叠平行四边形纸片 DEBF ,使顶点 E F 分别落在边 BE BF 上的点 A C 处,折痕分别为 DG DH .求证:四边形 ABCD 是三等角四边形.

(3)三等角四边形 ABCD 中, A = B = C ,若 CB = CD = 4 ,则当 AD 的长为何值时, AB 的长最大,其最大值是多少?并求此时对角线 AC 的长.

来源:2016年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质试题