初中数学

如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点A旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了(  )

A.πcmB.2πcmC.3πcmD.5πcm

来源:2016年甘肃省兰州市中考数学试卷(a卷)
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,网格纸上正方形小格的边长为1.图中线段和点绕着同一个点做相同的旋转,分别得到线段和点,则点所在的单位正方形区域是  

A.1区B.2区C.3区D.4区

来源:2017年福建省中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,在中,,点分别是的中点,点边上(均不与端点重合),.将绕点顺时针旋转,将绕点逆时针旋转,拼成四边形,则四边形周长的取值范围是  

来源:2016年福建省宁德市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,的半径为3,点上,,将扇形绕点顺时针旋转后恰好与扇形重合,则的长为  

A. 5 π 4 B. 5 π 2 C.D. 1 5 π 4

来源:2016年福建省宁德市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,在正方形ABCD中,点E(与点BC不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点FBC的垂线交BC的延长线于点G,连接CF

(1)求证:△ABE≌△EGF

(2)若AB=2,SABE=2SECF,求BE

来源:2016年广西来宾市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AECF相交于点P,将正方形OABCOAOF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是  

来源:2016年广西桂林市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以OE为圆心,OAED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是(  )

A.πB. 5 π 4 C.3+πD.8﹣π

来源:2016年广西桂林市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,△ABC中,∠C=90°,∠A=60°, AB = 2 3 .将△ABC沿直线CB向右作无滑动滚动一次,则点C经过的路径长是  

来源:2016年广西北海市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边ACBD=10,若将三角板DEB绕点B逆时针旋转45°得到△DEB,则点A在△DEB的(  )

A.内部B.外部

C.边上D.以上都有可能

来源:2016年广西北海市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

ABC的顶点坐标为A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐标原点O为旋转中心,顺时针旋转90°,得到△ABC′,点B′、C′分别是点BC的对应点.

(1)求过点B′的反比例函数解析式;

(2)求线段CC′的长.

来源:2016年广西百色市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,将正方形 中的阴影三角形绕点 顺时针旋转 后,得到的图形为   

A.

B.

C.

D.

来源:2017年广东省广州市中考数学试卷
  • 更新:2021-02-24
  • 题型:未知
  • 难度:未知

如图,四边形 ABCO是平行四边形, OA=2, AB=6,点 Cx轴的负半轴上,将▱ ABCO绕点 A逆时针旋转得到▱ ADEFAD经过点 O,点 F恰好落在 x轴的正半轴上,若点 D在反比例函数 y k x x<0)的图象上,则 k的值为   

来源:2016年广东省深圳市中考数学试卷
  • 更新:2021-02-24
  • 题型:未知
  • 难度:未知

下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是 (    )

A.

    等边三角形

B.

平行四边形

C.

     正八边形

D.

圆及其一条弦

来源:2020年内蒙古赤峰市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

如图, A B 两点的坐标分别为 ( - 2 , 0 ) ( 0 , 3 ) ,将线段 AB 绕点 B 逆时针旋转 90 ° 得到线段 BC ,过点 C CD OB ,垂足为 D ,反比例函数 y = k x 的图象经过点 C

(1)直接写出点 C 的坐标,并求反比例函数的解析式;

(2)点 P 在反比例函数 y = k x 的图象上,当 ΔPCD 的面积为3时,求点 P 的坐标.

来源:2020年辽宁省盘锦市中考数学试卷
  • 更新:2021-01-16
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 和正方形 CEFG (其中 BD > 2 CE ) BG 的延长线与直线 DE 交于点 H

(1)如图1,当点 G CD 上时,求证: BG = DE BG DE

(2)将正方形 CEFG 绕点 C 旋转一周.

①如图2,当点 E 在直线 CD 右侧时,求证: BH - DH = 2 CH

②当 DEC = 45 ° 时,若 AB = 3 CE = 1 ,请直接写出线段 DH 的长.

来源:2020年辽宁省阜新市中考数学试卷
  • 更新:2021-01-16
  • 题型:未知
  • 难度:未知

初中数学旋转的性质试题