如图,已知是的直径,与相切于点,且.
(1)求证:是的切线;
(2)延长交于点.若,的半径为2,求的长.(结果保留
如图,已知 是 的内接三角形, 是 的直径,连结 , 平分 .
(1)求证: ;
(2)若 ,求 的长.
如图,为半圆的直径,点为半圆上任一点.
(1)若,过点作半圆的切线交直线于点.求证:;
(2)若,过点作的平行线交半圆于点.当以点,,,为顶点的四边形为菱形时,求的长.
如图,在 中, ,点 是 边长一点, ,垂足为点 ,点 在线段 的延长线上,且 经过 , 两点.
(1)判断直线 与 的位置关系,并说明理由;
(2)若 的半径为2, 的长为 ,请求出 的度数.
如图是由边长为1的小正方形组成的网格,每个小正方形的顶点叫做格点,点,,,均在格点上,在网格中将点按下列步骤移动:
第一步:点绕点顺时针旋转得到点;
第二步:点绕点顺时针旋转得到点;
第三步:点绕点顺时针旋转回到点.
(1)请用圆规画出点经过的路径;
(2)所画图形是 对称图形;
(3)求所画图形的周长(结果保留.
如图,在 中, , ,以点 为圆心, 为半径的圆交 的延长线于点 ,过点 作 的平行线,交 于点 ,连接 .
(1)求证: 为 的切线;
(2)若 ,求弧 的长.
如图1和2,中,,,.点为延长线上一点,过点作切于点,设.
(1)如图1,为何值时,圆心落在上?若此时交于点,直接指出与的位置关系;
(2)当时,如图2,与交于点,求的度数,并通过计算比较弦与劣弧长度的大小;
(3)当与线段只有一个公共点时,直接写出的取值范围.
阅读理解:
我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.
例如:角的平分线是到角的两边距离相等的点的轨迹.
问题:如图1,已知 为 的中位线, 是边 上一动点,连接 交 于点 ,那么动点 为线段 中点.
理由: 线段 为 的中位线, ,
由平行线分线段成比例得:动点 为线段 中点.
由此你得到动点 的运动轨迹是: .
知识应用:
如图2,已知 为等边 边 、 上的动点,连接 ;若 ,且等边 的边长为8,求线段 中点 的运动轨迹的长.
拓展提高:
如图3, 为线段 上一动点(点 不与点 、 重合),在线段 的同侧分别作等边 和等边 ,连接 、 ,交点为 .
(1)求 的度数;
(2)若 ,求动点 运动轨迹的长.
如图,,为中点,点在线段上(不与点,重合),将绕点逆时针旋转后得到扇形,,分别切优弧于点,,且点,在异侧,连接.
(1)求证:;
(2)当时,求的长(结果保留;
(3)若的外心在扇形的内部,求的取值范围.
如图,半圆 的直径 ,以长为2的弦 为直径,向点 方向作半圆 ,其中 点在 上且不与 点重合,但 点可与 点重合.
发现: 的长与 的长之和为定值 ,求
思考:点 与 的最大距离为 ,此时点 , 间的距离为 ;
点 与 的最小距离为 ,此时半圆 的弧与 所围成的封闭图形面积为 ;
探究:当半圆 与 相切时,求 的长.
(注:结果保留 , ,
如图,在 中, , ,点 在 的内部, 经过 , 两点,交 于点 ,连接 并延长交 于点 ,以 , 为邻边作 .
(1)判断 与 的位置关系,并说明理由.
(2)若点 是 的中点, 的半径为2,求 的长.
如图,矩形 中, , ,将此矩形绕点 顺时针方向旋转 得到矩形 ,点 在边 上.
(1)若 , ,求在旋转过程中,点 到点 所经过路径的长度;
(2)将矩形 继续绕点 顺时针方向旋转得到矩形 ,点 在 的延长线上,设边 与 交于点 ,若 ,求 的值.
在下面的网格中,每个小正方形的边长均为1, 的三个顶点都是网格线的交点,已知 , 两点的坐标分别为 , .
(1)请在图中画出平面直角坐标系,并直接写出点 的坐标.
(2)将 绕着坐标原点顺时针旋转 ,画出旋转后的△ .
(3)接写出在上述旋转过程中,点 所经过的路径长.
在扇形 中,半径 ,点 在 上,连结 ,将 沿 折叠得到△ .
(1)如图1,若 ,且 与 所在的圆相切于点 .
①求 的度数.
②求 的长.
(2)如图2, 与 相交于点 ,若点 为 的中点,且 ,求 的长.