如图,内接于,为直径,作交于点,延长,交于点,过点作的切线,交于点.
(1)求证:;
(2)如果,,求弦的长.
如图,、是的两条直径,过点的的切线交的延长线于点,连接、.
(1)求证;;
(2)若是的中点,,求的半径.
如图,是的直径,是的弦,过点作的切线,交的延长线于点,过点作于点,交的延长线于点.
(1)求证:;
(2)若,,求的半径.
与相切于点,直线与相离,于点,且,与交于点,的延长线交直线于点.
(1)求证:;
(2)若的半径为3,求线段的长;
(3)若在上存在点,使是以为底边的等腰三角形,求的半径的取值范围.
已知关于的一元二次方程.
(1)求证:无论为任何实数,此方程总有两个实数根;
(2)若方程的两个实数根为、,满足,求的值;
(3)若的斜边为5,另外两条边的长恰好是方程的两个根、,求的内切圆半径.
如图,为的直径,,为圆上的两点,,弦,相交于点.
(1)求证:;
(2)若,,求的半径;
(3)在(2)的条件下,过点作的切线,交的延长线于点,过点作交于,两点(点在线段上),求的长.
如图,在菱形中,连结、交于点,过点作于点,以点为圆心,为半径的半圆交于点.
①求证:是的切线.
②若且,求图中阴影部分的面积.
③在②的条件下,是线段上的一动点,当为何值时,的值最小,并求出最小值.
在屏幕上有如下内容:
如图,内接于,直径的长为2,过点的切线交的延长线于点.张老师要求添加条件后,编制一道题目,并解答.
(1)在屏幕内容中添加条件,求的长.请你解答.
(2)以下是小明、小聪的对话:
小明:我加的条件是,就可以求出的长
小聪:你这样太简单了,我加的是,连结,就可以证明与全等.
参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.
如图,在中,以为圆心,为半径的圆与相切于点,与相交于点.
(1)求的度数.
(2)如图,点在上,连结与交于点,若,求的度数.
如图,是的直径,切于点,交于点,平分,连接.
(1) 求证:;
(2) 若,,求的半径 .
已知,分别与相切于点,,,为上一点.
(Ⅰ)如图①,求的大小;
(Ⅱ)如图②,为的直径,与相交于点.若,求的大小.
已知是的直径,弦与相交,,
如图①,若为的中点,求和的大小;
(Ⅱ)如图②,过点作的切线,与的延长线交于点,若,求的大小.
已知是的直径,是的切线,,交于点,是上一点,延长交于点.
(1)如图①,求和的大小;
(2)如图②,当时,求的大小.