初中数学

阅读下面材料,再回答问题:
有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”。
解决下列问题:
(1)菱形的“二分线”可以是                                   
(2)三角形的“二分线”可以是                                 
(3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm。点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止).设P、Q同时出发并运动了t秒。

(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;
(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存在,求出这样的t的值,若不存在,请说明理由。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.动点P从D点出发沿DC以每秒1个单位的速度向终点C运动,动点Q从C点出发沿CB以每秒2个单位的速度向B点运动.两点同时出发,当P点到达C点时,Q点随之停止运动.

(1)梯形ABCD的面积等于________;
(2)当PQ∥AB时,P点离开D点的时间等于______秒;
(3)当P、Q、C三点构成直角三角形时,P点离开D点多长时间?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在直角梯形OABC中,OA∥CB,A、B两点的坐标分别为A(15,0),B(10,12),动点P、Q分别从O、B出发,点P以每秒2个单位长度的速度沿OA向终点A运动,点Q以每秒1个单位的速度沿BC向终点C运动,当点P停止运动时,点Q也同时停止运动。线段OB、PQ相交于点D,过点D作DE∥OA,交AB于点E,连接QE并延长,交x轴于点F。设动点P、Q的运动时间为t(单位:秒)
(1)当t为何值时,四边形PABQ是等腰梯形?
(2)当t=2秒时,求梯形OFBC的面积;
(3)是否存在点P,使△PQF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

为了向国庆献礼,某校各班都在开展丰富多彩的庆祝活动,八年级(3)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的第一、二个步骤是:①先裁下了一张长BC=20 cm,宽AB=16 cm的矩形纸片ABCD,②将纸片沿着直线AE折叠,点D恰好落在BC边上的F处(如图),…请你根据①②步骤解答下列问题:(1)计算BF的长;(2)计算EC的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在等腰梯形ABCD中,∠C=600,AD=CD,E、F分别在AD、CD上,DE=CF,AF、BE交于点P.求∠BPF的大小.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在直角梯形ABCD中,AD∥BC,,AD = 6,BC = 8,,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围).
(2)当BP = 1时,求△EPQ与梯形ABCD重叠部分的面积.
(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,长为2,宽为的矩形纸片(),剪去一个边长等于矩形宽度的正方形(称为第一次操作);
(1)第一次操作后剩下的矩形长为,宽为         
(2)再把第一次操作后剩下的矩形剪去一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.
①求第二次操作后剩下的矩形的面积;
②若在第3次操作后,剩下的图形恰好是正方形,求的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直角梯形的边落在轴的正半轴上,且=4,=6,=8.正方形的两边分别落在坐标轴上,且它的面积等于直角梯形面积。将正方形沿轴的正半轴平行移动,设它与直角梯形的重叠部分面积为
(1)分析与计算:
求正方形的边长;
(2)操作与求解:
①正方形平行移动过程中,通过操作、观察,试判断>0)的变化情况是      

A.逐渐增大 B.逐渐减少 C.先增大后减少 D.先减少后增大

②当正方形顶点移动到点时,求的值;
(3)探究与归纳:




 

设正方形的顶点向右移动的距离为,求重叠部分面积的函数关系式。



  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)直接写出线段EG与CG的数量关系;
(2)将图1中△BEF绕B点逆时针旋转45º,如图2所示,取DF中点G,连接EG,CG.你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.  
(3)将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(1)按语句作图并回答:
作线段AC(AC=4),以A为圆心a为半径作圆,再以C为圆心b为半径作圆(,,圆A与圆C交于B、D两点),连结AB、BC、CD、DA.若能作出满足要求的四边形ABCD,则应满足什么条件?
 (2)若,求四边形ABCD的面积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连结AF、CE.
(1)求证:四边形AECF为平行四边形;
(2)当AECF为菱形,M点为BC的中点时,求AB:AE的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,点的坐标为,点在直线上运动,点分别为的中点,其中是大于零的常数.
(1)请判断四边形的形状,并证明你的结论;
(2)试求四边形的面积的关系式;
(3)设直线轴交于点,问:四边形能不能是矩形?若能,求出的值;若不能,说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,梯形ABCD中,ADBC,∠BAD=90°,CEAD于点EAD=4cm,BC=2cm,AB=3cm.从初始时刻开始,动点PQ分别从点AB同时出发,运动速度均为1 cm/s,动点P沿ABCE的方向运动,到点E停止;动点Q沿BCED的方向运动,到点D停止.设运动时间为s,PAQ的面积为y cm2.(这里规定:线段是面积为0的三角形)解答下列问题:

(1)当x=" 2" s时,y=________cm2;当= s时,y=________cm2
(2)当动点P在线段BC上运动,即3 ≤ x ≤ 5时,求y之间的函数关系式,并求出的值;
(3)当动点P在线段CE上运动,即5 < x ≤ 8 时,求y之间的函数关系式;
(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,菱形ABCD的边长为2,对角线BD=2,E、F分别是AD、CD上的两个动点且满足AE+CF=2.
(1) 由已知可得,∠BDA的度数为        
(2) 求证:△BDE≌△BCF.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质解答题