王老师出了一道操作探究题:已知凸四边形ABCD(如甲图)纸片,能否将凸四边形纸片剪两刀,分割成四块,然后再拼成一个平行四边形?
小明思考一会儿后口述他的做法:(1)找出四边的中点E、F、G、H;(2)沿EG、FH剪两刀,分成四块;(3)在C点处(见乙图),将三块……说到这里,王老师打断了他的表述,“我只需要听到这里,你的思路及操作非常正确”.(1)请你补充一下小明的口述,将Ⅰ、Ⅱ、Ⅲ进行怎样的变换与Ⅳ拼在一起?
(2)请你说明一下,乙图是平行四边形纸块吗?(将两个图形进行恰当标注,以便解决问题)
已知E、F分别是平行四边形ABCD的边AB、CD的中点,BD是对角线,AG∥BD交CB的延长线于G. (1)试说明△ADE≌△CBF;
(2)当四边形AGBD是矩形时,请你确定四边形BEDF的形状并说明;
(3)当四边形AGBD是矩形时,四边形AGCD是等腰梯形吗?直接说出结论.
如图1,正方形ABCD和正方形QMNP,∠M =∠B,M是正方形ABCD的对称中心,MN交AB于F,QM交AD于E.求证:ME = MF.
如图2,若将原题中的“正方形”改为“菱形”,其他条件不变,探索线段ME与线段MF的关系,并加以证明.
如图3,若将原题中的“正方形”改为“矩形”,且AB = mBC,其他条件不变,探索线段ME与线段MF的关系,并说明理由.
根据前面的探索和图4,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题;若不能,请说明理由
如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例
我们可以取直角梯形ABCD的一腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).
思考发现
小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的判定方法,可以判断出四边形ABEF是一个平行四边形,而且还是一个特殊的平行四边形——矩形.图2中,矩形ABEF的面积是 ;(用含a,b,c的式子表示)
类比图2的剪拼方法,请你就图3(其中AD∥BC)和图4(其中AB∥DC)的两种情形分别画出剪拼成一个平行四边形的示意图.
小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.
如图5的多边形中,AE=CD,AE∥CD,能否象上面剪切方法一样沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.
如图,等腰△OBD中,OD=BD,△OBD绕点O逆时针旋转
一定角度后得到△OAC,此时正好B、D、C在同一直线上,
且点D是BC的中点.求△OBD旋转的角度
求证:四边形ODAC是菱形.
如图,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:∠BAE=∠DCF。
如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,
E是AB的中点,连结CE并延长交AD于F.求证:① △AEF≌△BEC;
② 四边形BCFD是平行四边形;如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,求sin∠ACH的值.
在平面直角坐标系中,把矩形OABC的边OA、OC
分别放在轴和
轴的正半轴上,已知OA
,OC
直接写出A、B、C三点的坐标
将矩形OABC绕点O逆时针旋转
°,得到矩形OA1B1C1,
其中点A的对应点为点A1.
①当时,设AC交OA1于点K(如图1),
若△OAK为等腰三角形,请直接写出的值;
②当90时(如图2),延长AC交A1C1于点D,
求证:AD⊥A1C1;
③当点B1落在轴正半轴上时(如图3),设BC
与OA1交于点P,求过点P的反比例函数的解析式;
并探索:该反比例函数的图象是否经过矩形OABC
的对称中心?请说明理由.
如图,已知平行四边形ABCD的对角线AC的垂直
平分线与边AD、BC分别交于E、F两点,垂足是点O.求证:△AOE≌△COF;
问:四边形AFCE是什么特殊的四边形?
(直接写出结论,不需要证明)
(本题8分)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.
(3)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(本小问均不要求证明)
(本题6分) 已知:如图,在△ABC中, D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.(1)求证:D是BC的中点;
(2)如果AB=AC,试判断四边形ADCF的
形状,并证明你的结论.
在四边形ABCD中,AB=BC,BF平分∠ABC,AF∥DC,
连接AC,CF. 求证:(1)AF=CF;
(2)CA平
分∠DCF.
(本题满分10分)
如图,F为正方形ABCD的对角线AC上一点,FE⊥AD于点E,M为CF的中点.(1)求证
:MB=MD;
(2)求证:ME=MB.
(本题满分12分)在四边形ABCD中,AD=a,CD=b,点E在射线BA上,点F在射线BC上.
观察计算:
(1)如图①,若四边形ABCD是矩形,E是AB的中点.F是BC的中点,则四边形DEBF 的面积S四边形DEBF=_______.
(2)若四边形ABCD是平行四边形,E是AB的中点,F是BC的中点,则S四边形DEBF:S四边形ABCD=_______.
(3)如图②,若四边形ABCD是平行四边形,且BE:AB=2:3,BF:BC=2:3,则S四边形DEBF:S四边形ABCD=_______.
探索规律:
如图③,在四边形ABCD中,若BE:AB=n:m,BF:BC=n:m,试猜想S四边形DEBF:S四边形ABCD=_______,请说明理由.
解决问题:
如图④,某小区角落有一四边形空地,为了充分利用空间,美化环境,想把它沿两侧墙壁改造为一块绿地,使绿地面积是原空地面积的3倍.请分别在两侧墙壁上确定点E、F,画出改造线DE、DF,并写出作法.