对于边长为3的正方形ABCD,建立适当的直角坐标系,写出各个顶点的坐标.
【试题背景】已知:l ∥∥∥k,平行线l与、与、与k之间的距离分别为1、2、3,且1 =3 = 1,2 =" 2" .我们把四个顶点分别在l、、、k这四条平行线上的四边形称为“格线四边形”.
【探究1】(1)如图1,正方形为“格线四边形”,于点,的反向延长线交直线k于点. 求正方形的边长.
【探究2】(2)矩形为“格线四边形”,其长 :宽 =" 2" :1 ,则矩形的宽为 .(直接写出结果即可)
【探究3】(3)如图2,菱形为“格线四边形”且∠=60°,△是等边三角形,于点, ∠=90°,直线分别交直线l、k于点、. 求证:.
【拓 展】(4)如图3,l ∥k,等边三角形的顶点、分别落在直线l、k上,于点,且="4" ,∠=90°,直线分别交直线l、k于点、,点、分别是线段、上的动点,且始终保持=,于点.
猜想:在什么范围内,∥?直接写出结论。
如图,在四边形ABCD中,∠ADC=∠B=90°,DE⊥AB,垂足为E,且DE=EB=5,请用割补(旋转图形)的方法求四边形ABCD的面积.
(如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.
求证:四边形BCDE是矩形.
已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.
求证:四边形ABCD为平行四边形.
如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.
(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;
(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF的面积和△CEF的周长是否发生变化?如果不变,求出这个定值;如果变化,求出最小值.
(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形(尺规作图,保留作图痕迹),并猜想BE与CD的关系:___________;你是通过证明_______________ 得到的。
(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?并说明理由;
(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:
如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.
如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.
(1)试判断△BDE的形状,并说明理由;
(2)若AB=4,AD=8,求△BDE的面积.
如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:
(1)在图①中画一条线段MN,使MN=;
(2)在图②中画一个△ABC,使其三边长分别为3,,.
如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.