初中数学

有两个内角分别是它们对角的一半的四边形叫做半对角四边形.

(1)如图1,在半对角四边形 ABCD 中, B = 1 2 D C = 1 2 A ,求 B C 的度数之和;

(2)如图2,锐角 ΔABC 内接于 O ,若边 AB 上存在一点 D ,使得 BD = BO OBA 的平分线交 OA 于点 E ,连接 DE 并延长交 AC 于点 F AFE = 2 EAF .求证:四边形 DBCF 是半对角四边形;

(3)如图3,在(2)的条件下,过点 D DG OB 于点 H ,交 BC 于点 G ,当 DH = BG 时,求 ΔBGH ΔABC 的面积之比.

来源:2017年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° ,以 BC 为直径的 O AB 于点 D ,切线 DE AC 于点 E

(1)求证: A = ADE

(2)若 AD = 16 DE = 10 ,求 BC 的长.

来源:2017年浙江省丽水市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知: AB O 的直径,点 C O 上, CD O 的切线, AD CD 于点 D E AB 延长线上一点, CE O 于点 F ,连接 OC AC

(1)求证: AC 平分 DAO

(2)若 DAO = 105 ° E = 30 °

①求 OCE 的度数;

②若 O 的半径为 2 2 ,求线段 EF 的长.

来源:2017年浙江省金华市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC B = 40 °

(1)在图中,用尺规作出 ΔABC 的内切圆 O ,并标出 O 与边 AB BC AC 的切点 D E F (保留痕迹,不必写作法);

(2)连接 EF DF ,求 EFD 的度数.

来源:2017年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, O Rt Δ ABC 的直角边 AC 上一点,以 OC 为半径的 O 与斜边 AB 相切于点 D ,交 OA 于点 E .已知 BC = 3 AC = 3

(1)求 AD 的长;

(2)求图中阴影部分的面积.

来源:2017年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 内接于 O ,点 C 在劣弧 AB 上(不与点 A B 重合),点 D 为弦 BC 的中点, DE BC DE AC 的延长线交于点 E ,射线 AO 与射线 EB 交于点 F ,与 O 交于点 G ,设 GAB = α ACB = β EAG + EBA = γ

(1)点点同学通过画图和测量得到以下近似数据:

α

30 °

40 °

50 °

60 °

β

120 °

130 °

140 °

150 °

γ

150 °

140 °

130 °

120 °

猜想: β 关于 α 的函数表达式, γ 关于 α 的函数表达式,并给出证明;

(2)若 γ = 135 ° CD = 3 ΔABE 的面积为 ΔABC 的面积的4倍,求 O 半径的长.

来源:2017年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在射线 BA BC AD CD 围成的菱形 ABCD 中, ABC = 60 ° AB = 6 3 O 是射线 BD 上一点, O BA BC 都相切,与 BO 的延长线交于点 M .过 M EF BD 交线段 BA (或射线 AD ) 于点 E ,交线段 BC (或射线 CD ) 于点 F .以 EF 为边作矩形 EFGH ,点 G H 分别在围成菱形的另外两条射线上.

(1)求证: BO = 2 OM

(2)设 EF > HE ,当矩形 EFGH 的面积为 24 3 时,求 O 的半径.

(3)当 HE HG O 相切时,求出所有满足条件的 BO 的长.

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, C = 90 ° D BC 边上一点,以 DB 为直径的 O 经过 AB 的中点 E ,交 AD 的延长线于点 F ,连接 EF

(1)求证: 1 = F

(2)若 sin B = 5 5 EF = 2 5 ,求 CD 的长.

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在方格纸中,点 A B P 都在格点上.请按要求画出以 AB 为边的格点四边形,使 P 在四边形内部(不包括边界上),且 P 到四边形的两个顶点的距离相等.

(1)在图甲中画出一个 ABCD

(2)在图乙中画出一个四边形 ABCD ,使 D = 90 ° ,且 A 90 ° .(注:图甲、乙在答题纸上)

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,弦 CD AB ,垂足为点 P ,直线 BF AD 的延长线交于点 F ,且 AFB = ABC

(1)求证:直线 BF O 的切线.

(2)若 CD = 2 3 OP = 1 ,求线段 BF 的长.

来源:2016年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知 O 的直径 AB = 10 ,弦 AC = 6 BAC 的平分线交 O 于点 D ,过点 D DE AC AC 的延长线于点 E

(1)求证: DE O 的切线.

(2)求 DE 的长.

来源:2016年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, AB 是以 BC 为直径的半圆 O 的切线, D 为半圆上一点, AD = AB AD BC 的延长线相交于点 E

(1)求证: AD 是半圆 O 的切线;

(2)连接 CD ,求证: A = 2 CDE

(3)若 CDE = 27 ° OB = 2 ,求 BD ̂ 的长.

来源:2016年浙江省丽水市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, AB 是以 BC 为直径的半圆 O 的切线, D 为半圆上一点, AD = AB AD BC 的延长线相交于点 E

(1)求证: AD 是半圆 O 的切线;

(2)连接 CD ,求证: A = 2 CDE

(3)若 CDE = 27 ° OB = 2 ,求 BD ̂ 的长.

来源:2016年浙江省丽水市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

四边形 ABCD 的对角线交于点 E ,有 AE = EC BE = ED ,以 AB 为直径的半圆过点 E ,圆心为 O

(1)利用图1,求证:四边形 ABCD 是菱形.

(2)如图2,若 CD 的延长线与半圆相切于点 F ,已知直径 AB = 8

①连接 OE ,求 ΔOBE 的面积.

②求弧 AE 的长.

来源:2016年浙江省金华市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知一次函数 y 1 = kx + b 的图象与反比例函数 y 2 = 4 x 的图象交于点 A ( 4 , m ) ,且与 y 轴交于点 B ,第一象限内点 C 在反比例函数 y 2 = 4 x 的图象上,且以点 C 为圆心的圆与 x 轴, y 轴分别相切于点 D B

(1)求 m 的值;

(2)求一次函数的表达式;

(3)根据图象,当 y 1 < y 2 < 0 时,写出 x 的取值范围.

来源:2016年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学圆解答题