如图,在 中,半径 ,过点 的中点 作 交 于 、 两点,且 ,以 为圆心, 为半径作 ,交 于 点.
(1)求 的半径 的长;
(2)计算阴影部分的面积.
如图,在平面直角坐标系中,四边形 是以 为直径的 的内接四边形,点 , 在 轴上, 是边长为2的等边三角形,过点 作直线 与 轴垂直,交 于点 ,垂足为点 ,且点 平分 .
(1)求过 , , 三点的抛物线的解析式;
(2)求证:四边形 是菱形;
(3)请问在抛物线上是否存在一点 ,使得 的面积等于定值5?若存在,请求出所有的点 的坐标;若不存在,请说明理由.
已知点 , 和直线 ,则点 到直线 的距离证明可用公式 计算.
例如:求点 到直线 的距离.
解:因为直线 ,其中 , .
所以点 到直线 的距离为: .
根据以上材料,解答下列问题:
(1)求点 到直线 的距离;
(2)已知 的圆心 坐标为 ,半径 为2,判断 与直线 的位置关系并说明理由;
(3)已知直线 与 平行,求这两条直线之间的距离.
(1)如图1,在菱形 中, ,求证: .
(2)如图2, 是 的直径, 与 相切于点 , 与 相交于点 ,连接 , ,求 的度数.
已知: 为 的直径,延长 到点 ,过点 作圆 的切线,切点为 ,连接 ,且 .
(1)求 的度数;
(2)若点 是弧 的中点,连接 交 于点 ,且 ,求 的面积. 取
如图,已知正方形 的边长为4,点 是 边上的一个动点,连接 ,过点 作 的垂线交 于点 ,以 为边作正方形 ,顶点 在线段 上,对角线 、 相交于点 .
(1)若 ,则 ;
(2)①求证:点 一定在 的外接圆上;
②当点 从点 运动到点 时,点 也随之运动,求点 经过的路径长;
(3)在点 从点 到点 的运动过程中, 的外接圆的圆心也随之运动,求该圆心到 边的距离的最大值.
如图,在平面直角坐标系中, 的斜边 在 轴上,边 与 轴交于点 , 平分 交边 于点 ,经过点 、 、 的圆的圆心 恰好在 轴上, 与 轴相交于另一点 .
(1)求证: 是 的切线;
(2)若点 、 的坐标分别为 , ,求 的半径;
(3)试探究线段 、 、 三者之间满足的等量关系,并证明你的结论.
如图,已知二次函数 的图象与 轴交于 , 两点,与 轴交于点 , 的半径为 , 为 上一动点.
(1)点 , 的坐标分别为 , ;
(2)是否存在点 ,使得 为直角三角形?若存在,求出点 的坐标;若不存在,请说明理由;
(3)连接 ,若 为 的中点,连接 ,则 的最大值 .
如图,以原点 为圆心,3为半径的圆与 轴分别交于 , 两点(点 在点 的右边), 是半径 上一点,过 且垂直于 的直线与 分别交于 , 两点(点 在点 的上方),直线 , 交于点 .若 .
(1)求点 的坐标;
(2)求过点 和点 ,且顶点在直线 上的抛物线的函数表达式.
如图,在平面直角坐标系中,已知点 ,以原点 为圆心、3为半径作圆. 从点 出发,以每秒1个单位的速度沿 轴正半轴运动,运动时间为 .连接 ,将 沿 翻折,得到 .求 有一边所在直线与 相切时 的值.
如图,在平面直角坐标系中,已知点 ,以原点 为圆心、3为半径作圆. 从点 出发,以每秒1个单位的速度沿 轴正半轴运动,运动时间为 .连接 ,将 沿 翻折,得到 .求 有一边所在直线与 相切时 的值.
如图,在矩形纸片 中,已知 , ,点 在边 上移动,连接 ,将多边形 沿直线 翻折,得到多边形 ,点 、 的对应点分别为点 、 .
(1)当 恰好经过点 时(如图 ),求线段 的长;
(2)若 分别交边 , 于点 , ,且 (如图 ,求 的面积;
(3)在点 从点 移动到点 的过程中,求点 运动的路径长.
如图, 中, , ,点 在 上, ,以 为半径的 与 相切于点 ,交 于点 ,求弦 的长.
如图,在平面直角坐标系 中,过点 的直线交 轴正半轴于点 ,将直线 绕着点 顺时针旋转 后,分别与 轴、 轴交于点 、 .
(1)若 ,求直线 的函数关系式;
(2)连接 ,若 的面积是5,求点 的运动路径长.