如图,在 中, ,点 在 边上,过 , , 三点的 交 边于另一点 ,且 是 的中点, 是 的一条直径,连接 并延长交 边于 点.
(1)求证:四边形 为平行四边形;
(2)当 时,求 的值.
在矩形 中, ,点 、 分别是边 、 上的动点,且 ,连接 ,将矩形 沿 折叠,点 落在点 处,点 落在点 处.
(1)如图1,当 与线段 交于点 时,求证: ;
(2)如图2,当点 在线段 的延长线上时, 交 于点 ,求证:点 在线段 的垂直平分线上;
(3)当 时,在点 由点 移动到 中点的过程中,计算出点 运动的路线长.
如图,在矩形 中, , ,将此矩形折叠,使点 与点 重合,点 落在点 处,折痕为 ,则 的长为 , 的长为 .
如图,在矩形 中,点 在边 上, 与 关于直线 对称,点 的对称点 在边 上, 为 中点,连结 分别与 , 交于 , 两点.若 , ,则 的长为 , 的值为 .
如图,在矩形 中, , ,点 , 分别是边 , 上的动点,点 不与 , 重合,且 , 是五边形 内满足 且 的点.现给出以下结论:
① 与 一定互补;
②点 到边 , 的距离一定相等;
③点 到边 , 的距离可能相等;
④点 到边 的距离的最大值为 .
其中正确的是 .(写出所有正确结论的序号)
如图,在平面直角坐标系中,矩形 的 边在 轴的正半轴上, 边在 轴的正半轴上,点 的坐标为 ,反比例函数 的图象与 交于点 ,与对角线 交于点 ,与 交于点 ,连接 , , , .下列结论:
① ;② ;③ ;④ .
其中正确的结论有
A. |
4个 |
B. |
3个 |
C. |
2个 |
D. |
1个 |
[性质探究]
如图,在矩形 中,对角线 , 相交于点 , 平分 ,交 于点 .作 于点 ,分别交 , 于点 , .
(1)判断 的形状并说明理由.
(2)求证: .
[迁移应用]
(3)记 的面积为 , 的面积为 ,当 时,求 的值.
[拓展延伸]
(4)若 交射线 于点 ,[性质探究]中的其余条件不变,连结 ,当 的面积为矩形 面积的 时,请直接写出 的值.
如图,在矩形 中, , ,把边 沿对角线 平移,点 , 分别对应点 , 给出下列结论:
①顺次连接点 , , , 的图形是平行四边形;
②点 到它关于直线 的对称点的距离为48;
③ 的最大值为15;
④ 的最小值为 .
其中正确结论的个数是
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
问题提出
(1)如图1,在 中, , , 的平分线交 于点 .过点 分别作 , .垂足分别为 , ,则图1中与线段 相等的线段是 .
问题探究
(2)如图2, 是半圆 的直径, . 是 上一点,且 ,连接 , . 的平分线交 于点 ,过点 分别作 , ,垂足分别为 , ,求线段 的长.
问题解决
(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知 的直径 ,点 在 上,且 . 为 上一点,连接 并延长,交 于点 .连接 , .过点 分别作 , ,垂足分别为 , .按设计要求,四边形 内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设 的长为 ,阴影部分的面积为 .
①求 与 之间的函数关系式;
②按照“少儿活动中心”的设计要求,发现当 的长度为 时,整体布局比较合理.试求当 时.室内活动区(四边形 的面积.
如图,矩形 中, , ,点 是 边上一点, ,连接 ,点 是 延长线上一点,连接 ,且 ,则 .
如图,在平面直角坐标系中,矩形 的顶点 , 在 轴的正半轴上,反比例函数 的图象经过顶点 ,分别与对角线 ,边 交于点 , ,连接 , .若点 为 的中点, 的面积为1,则 的值为
A. |
|
B. |
|
C. |
2 |
D. |
3 |
如图是一张矩形纸片 ,点 是对角线 的中点,点 在 边上,把 沿直线 折叠,使点 落在对角线 上的点 处,连接 , .若 ,则 度.
如图,在矩形 中, , ,点 , 分别在边 , 上,且 ,按以下步骤操作:
第一步,沿直线 翻折,点 的对应点 恰好落在对角线 上,点 的对应点为 ,则线段 的长为 ;
第二步,分别在 , 上取点 , ,沿直线 继续翻折,使点 与点 重合,则线段 的长为 .
如图,点 是函数 , 的图象上一点,过点 分别作 轴和 轴的垂线,垂足分别为点 、 ,交函数 , 的图象于点 、 ,连接 、 、 、 ,其中 .下列结论:① ;② ;③ ,其中正确的是
A. |
①② |
B. |
①③ |
C. |
②③ |
D. |
① |