在 中, , 是边 上一动点,连接 ,将 绕点 逆时针旋转至 的位置,使得 .
(1)如图1,当 时,连接 ,交 于点 .若 平分 , ,求 的长;
(2)如图2,连接 ,取 的中点 ,连接 .猜想 与 存在的数量关系,并证明你的猜想;
(3)如图3,在(2)的条件下,连接 , .若 ,当 , 时,请直接写出 的值.
在等腰 中, ,点 是 边上一点(不与点 、 重合),连结 .
(1)如图1,若 ,点 关于直线 的对称点为点 ,连结 , ,则 ;
(2)若 ,将线段 绕点 顺时针旋转 得到线段 ,连结 .
①在图2中补全图形;
②探究 与 的数量关系,并证明;
(3)如图3,若 ,且 .试探究 、 、 之间满足的数量关系,并证明.
如图,在 中, ,以 为直径的 与 相交于点 , ,垂足为 .
(1)求证: 是 的切线;
(2)若弦 垂直于 ,垂足为 , , ,求 的半径;
(3)在(2)的条件下,当 时,求线段 的长.
在等腰 中, , 是直角三角形, , ,连接 、 ,点 是 的中点,连接 .
(1)当 ,点 在边 上时,如图①所示,求证: ;
(2)当 ,把 绕点 逆时针旋转,顶点 落在边 上时,如图②所示,当 ,点 在边 上时,如图③所示,猜想图②、图③中线段 和 又有怎样的数量关系?请直接写出你的猜想,不需证明.
如图, 中, , 是 的外接圆, 的延长线交边 于点 .
[小题1]求证: ;
[小题2]当 是等腰三角形时,求 的大小;
[小题3]当 , 时,求边 的长.
我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.
(1)概念理解:
如图1,在 中, , , ,试判断 是否是”等高底”三角形,请说明理由.
(2)问题探究:
如图2, 是“等高底”三角形, 是”等底”,作 关于 所在直线的对称图形得到△ ,连接 交直线 于点 .若点 是△ 的重心,求 的值.
(3)应用拓展:
如图3,已知 , 与 之间的距离为2.“等高底” 的“等底” 在直线 上,点 在直线 上,有一边的长是 的 倍.将 绕点 按顺时针方向旋转 得到△ , 所在直线交 于点 .求 的值.
如图,已知线段 , 于点 ,且 , 是射线 上一动点, , 分别是 , 的中点,过点 , , 的圆与 的另一交点 (点 在线段 上),连接 , .
(1)当 时,求 和 的度数;
(2)求证: .
(3)在点 的运动过程中
①当 时,取四边形 一边的两端点和线段 上一点 ,若以这三点为顶点的三角形是直角三角形,且 为锐角顶点,求所有满足条件的 的值;
②记 与圆的另一个交点为 ,将点 绕点 旋转 得到点 ,当点 恰好落在 上时,连接 , , , ,直接写出 和 的面积之比.
如图,在平面直角坐标系中,矩形 的边 在 轴上, 、 的长分别是一元二次方程 的两个根 , ,边 交 轴于点 ,动点 以每秒1个单位长度的速度,从点 出发沿折线段 向点 运动,运动的时间为 秒,设 的面积为 .
(1)求点 的坐标;
(2)求 关于 的函数关系式,并写出自变量的取值范围;
(3)在点 运动的过程中,是否存在点 ,使 是以 为腰的等腰三角形?若存在,直接写出点 的坐标;若不存在,请说明理由.
(1)数学理解:如图①, 是等腰直角三角形,过斜边 的中点 作正方形 ,分别交 , 于点 , ,求 , , 之间的数量关系;
(2)问题解决:如图②,在任意直角 内,找一点 ,过点 作正方形 ,分别交 , 于点 , ,若 ,求 的度数;
(3)联系拓广:如图③,在(2)的条件下,分别延长 , ,交 于点 , ,求 , , 的数量关系.
如图,直角 中, , 在 上,连接 ,作 分别交 于 , 于 .
(1)如图1,若 ,求证: ;
(2)如图2,若 ,取 的中点 ,连接 交 于 ,求证:① ;② .
已知,在 中, , , , 是 边上的一个动点,将 沿 所在直线折叠,使点 落在点 处.
(1)如图1,若点 是 中点,连接 .
①写出 , 的长;
②求证:四边形 是平行四边形.
(2)如图2,若 ,过点 作 交 的延长线于点 ,求 的长.
已知在矩形中,的平分线与边所在的直线交于点,点是线段上一定点(其中
(1)如图1,若点在边上(不与重合),将绕点逆时针旋转后,角的两边、分别交射线于点、.
①求证:; ②探究:、、之间有怎样的数量关系,并证明你的结论.
(2)拓展:如图2,若点在的延长线上(不与重合),过点作,交射线于点,你认为(1)中、、之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.
如图,半径为4的中,弦的长度为,点是劣弧上的一个动点,点是弦的中点,点是弦的中点,连接、、.
(1)求的度数;
(2)当点沿着劣弧从点开始,逆时针运动到点时,求的外心所经过的路径的长度;
(3)分别记,的面积为,,当时,求弦的长度.
如图所示,抛物线 与 轴相交于 、 两点,与 轴相交于点 ,点 为抛物线的顶点.
(1)求点 及顶点 的坐标.
(2)若点 是第四象限内抛物线上的一个动点,连接 、 ,求 面积的最大值及此时点 的坐标.
(3)若点 是抛物线对称轴上的动点,点 是抛物线上的动点,是否存在以点 、 、 、 为顶点的四边形是平行四边形.若存在,求出点 的坐标;若不存在,试说明理由.
(4)直线 交 轴于点 ,若点 是线段 上的一个动点,是否存在以点 、 、 为顶点的三角形与 相似.若存在,求出点 的坐标;若不存在,请说明理由.