如图,在 中, , 的垂直平分线交 于点 ,交 与点 ,已知 的周长为10,且 ,则 的长为
A.3B.4C.5D.6
已知 是 的直径,点 是 延长线上一点, , 是 的弦, .
(1)求证:直线 是 的切线;
(2)若 ,垂足为 , 的半径为4,求 的长.
如图,已知 为 的直径,直线 经过点 ,且 , ,线段 和 分别交 于点 、 , ,则 .
在等腰 中, ,以 为直径的 分别与 , 相交于点 , ,过点 作 ,垂足为点 .
(1)求证: 是 的切线;
(2)分别延长 , ,相交于点 , , 的半径为6,求阴影部分的面积.
问题背景:已知 的顶点 在 的边 所在直线上(不与 , 重合), 交 所在直线于点 , 交 所在直线于点 ,记 的面积为 , 的面积为 .
(1)初步尝试:如图①,当 是等边三角形, , ,且 , 时,则 ;
(2)类比探究:在(1)的条件下,先将点 沿 平移,使 ,再将 绕点 旋转至如图②所示位置,求 的值;
(3)延伸拓展:当 是等腰三角形时,设 .
(Ⅰ)如图③,当点 在线段 上运动时,设 , ,求 的表达式(结果用 , 和 的三角函数表示).
(Ⅱ)如图④,当点 在 的延长线上运动时,设 , ,直接写出 的表达式,不必写出解答过程.
如图,已知 是 的直径,过 点作 ,交弦 于点 ,交 于点 ,且使 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
如图,在 中, ,连接 并延长交 的延长线于点 .
(1)求证: ;
(2)若 , .求 的度数.
如图, 的顶点 、 分别在 轴, 轴上, ,且 的面积为8.
(1)直接写出 、 两点的坐标;
(2)过点 、 的抛物线 与 轴的另一个交点为点 .
①若 是以 为腰的等腰三角形,求此时抛物线的解析式;
②将抛物线 向下平移4个单位后,恰好与直线 只有一个交点 ,求点 的坐标.
如图,已知 内接于 , 为 的直径, ,交 的延长线于点 .
(1) 为 的中点,连接 ,求证: 是 的切线;
(2)若 ,求 的大小.