如图,在 中, .在 、 上分别截取 , ,使 .再分别以点 , 为圆心,以大于 的长为半径作弧,两弧在 内交于点 ,作射线 ,交 于点 .若 ,则 的长为
A. |
2 |
B. |
3 |
C. |
4 |
D. |
5 |
如图,中,,以为直径的交于点,点为延长线上一点,且.
(1)求证:是的切线;
(2)若,,求的半径.
如图,矩形 的顶点 , , 分别落在 的边 , 上,若 ,要求只用无刻度的直尺作 的平分线.小明的作法如下:连接 , 交于点 ,作射线 ,则射线 平分 .有以下几条几何性质:①矩形的四个角都是直角,②矩形的对角线互相平分,③等腰三角形的"三线合一".小明的作法依据是
A. |
①② |
B. |
①③ |
C. |
②③ |
D. |
①②③ |
如图,是的直径,点在的延长线上,、是上的两点,,,延长交的延长线于点.
(1)求证:是的切线;
(2)求证:;
(3)若,,求弦的长.
如图,在中,,为边上的点,且,为线段的中点,过点作,过点作,且、相交于点.
(1)求证:;
(2)求证:.
如图所示,在平面直角坐标系 中,等腰 的边 与反比例函数 的图象相交于点 ,其中 ,点 在 轴的正半轴上,点 的坐标为 ,过点 作 轴于点 .
(1)已知一次函数的图象过点 , ,求该一次函数的表达式;
(2)若点 是线段 上的一点,满足 ,过点 作 轴于点 ,连结 ,记 的面积为 ,设 ,
①用 表示 (不需要写出 的取值范围);
②当 取最小值时,求 的值.
如图, 中, , , 于点 , 是线段 上的一个动点,则 的最小值是
A. |
|
B. |
|
C. |
|
D. |
10 |
如图,为的直径,且,点是上的一动点(不与,重合),过点作的切线交的延长线于点,点是的中点,连接.
(1)求证:是的切线;
(2)当时,求阴影部分面积.
操作体验:如图,在矩形中,点、分别在边、上,将矩形沿直线折叠,使点恰好与点重合,点落在点处.点为直线上一动点(不与、重合),过点分别作直线、的垂线,垂足分别为点和,以、为邻边构造平行四边形.
(1)如图1,求证:;
(2)特例感知:如图2,若,,当点在线段上运动时,求平行四边形的周长;
(3)类比探究:若,.
①如图3,当点在线段的延长线上运动时,试用含、的式子表示与之间的数量关系,并证明;
②如图4,当点在线段的延长线上运动时,请直接用含、的式子表示与之间的数量关系.(不要求写证明过程)
如图, 、 为圆 的切线,切点分别为 、 , 交 于点 , 的延长线交圆 于点 ,下列结论不一定成立的是
A. |
|
B. |
|
C. |
|
D. |
平分 |