初中数学

如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=(  )

A.50°B.100°C.120°D.130°

来源:2016年湖北省黄石市中考数学试卷
  • 更新:2021-04-07
  • 题型:未知
  • 难度:未知

如图,点 A 在双曲线 y = 3 x ( x > 0 ) 上,过点 A AC x 轴,垂足为 C OA 的垂直平分线交 OC 于点 B ,当 AC = 1 时, ΔABC 的周长为           

来源:2017年青海省西宁市中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AC的垂直平分线分别交ACBCED两点,EC=4,△ABC的周长为23,则△ABD的周长为(  )

A.13B.15C.17D.19

来源:2016年湖北省潜江市、天门市、仙桃市、江汉油田中考数学试卷
  • 更新:2021-04-07
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,按以下步骤作图:①分别以点 A C 为圆心,以大于 1 2 AC 的长为半径作弧,两弧相交于点 M N ;②作直线 MN CD 于点 E .若 DE = 2 CE = 3 ,则矩形的对角线 AC 的长为  

来源:2018年四川省成都市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在中,,点上,以为半径的于点的垂直平分线交于点,交于点,连接

(1)判断直线的位置关系,并说明理由;

(2)若,求线段的长.

来源:2016年福建省三明市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, D AB 上一点, DE AC 于点 E F AD 的中点, FG BC 于点 G ,与 DE 交于点 H ,若 FG = AF AG 平分 CAB ,连接 GE GD

(1)求证: ΔECG ΔGHD

(2)小亮同学经过探究发现: AD = AC + EC .请你帮助小亮同学证明这一结论.

(3)若 B = 30 ° ,判定四边形 AEGF 是否为菱形,并说明理由.

来源:2018年山东省泰安市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,已知线段 ,分别以 为圆心,大于 1 2 AB为半径作弧,连接弧的交点得到直线 ,在直线 上取一点 ,使得 ,延长 ,求 的度数为   

A.

B.

C.

D.

来源:2017年广东省深圳市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

阅读与思考

如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.

× × × 日星期日

没有直角尺也能作出直角

今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线 AB ,现根据木板的情况,要过 AB 上的一点 C ,作出 AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?

办法一:如图①,可利用一把有刻度的直尺在 AB 上量出 CD = 30 cm ,然后分别以 D C 为圆心,以 50 cm 40 cm 为半径画圆弧,两弧相交于点 E ,作直线 CE ,则 DCE 必为 90 °

办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出 M N 两点,然后把木棒斜放在木板上,使点 M 与点 C 重合,用铅笔在木板上将点 N 对应的位置标记为点 Q ,保持点 N 不动,将木棒绕点 N 旋转,使点 M 落在 AB 上,在木板上将点 M 对应的位置标记为点 R .然后将 RQ 延长,在延长线上截取线段 QS = MN ,得到点 S ,作直线 SC ,则 RCS = 90 °

我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?

任务:

(1)填空:“办法一”依据的一个数学定理是     

(2)根据“办法二”的操作过程,证明 RCS = 90 °

(3)①尺规作图:请在图③的木板上,过点 C 作出 AB 的垂线(在木板上保留作图痕迹,不写作法);

②说明你的作法所依据的数学定理或基本事实(写出一个即可).

来源:2020年山西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是平行四边形,点 E 是边 CD 上一点,且 BC = EC CF BE AB 于点 F P EB 延长线上一点,下列结论:

BE 平分 CBF ;② CF 平分 DCB ;③ BC = FB ;④ PF = PC

其中正确结论的个数为 (    )

A.1B.2C.3D.4

来源:2017年山东省泰安市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC < BC .分别以点 A B 为圆心,大于 1 2 AB 的长为半径画弧,两弧交于 D E 两点,直线 DE BC 于点 F ,连接 AF .以点 A 为圆心, AF 为半径画弧,交 BC 延长线于点 H ,连接 AH .若 BC = 3 ,则 ΔAFH 的周长为   

来源:2021年浙江省台州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC C = 70 ° ,分别以点 A B 为圆心,大于 1 2 AB 的长为半径作弧,两弧相交于 M N 两点,作直线 MN AC 于点 D ,连接 BD ,则 BDC =

   °

来源:2021年新疆生产建设兵团中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在 Rt ABC 中, BAC 90 ° ,以点A为圆心,以AB长为半径作弧交BC于点D,再分别以点BD为圆心,以大于 1 2 BD 的长为半径作弧,两弧交于点P,作射线APBC于点E,若 AB 3 AC 4 ,则 CD (  )

A. 12 5 B. 9 5 C. 8 5 D. 7 5

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, AB = AC = 14 cm AB 的垂直平分线 MN AC 于点 D ,且 ΔDBC 的周长是 24 cm ,则 BC =    cm

来源:2020年青海省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:

(1)作线段 AB ,分别以 A B 为圆心,以 AB 长为半径作弧,两弧的交点为 C

(2)以 C 为圆心,仍以 AB 长为半径作弧交 AC 的延长线于点 D

(3)连接 BD BC

下列说法不正确的是 (    )

A. CBD = 30 ° B. S ΔBDC = 3 4 A B 2

C.点 C ΔABD 的外心D. sin 2 A + cos 2 D = 1

来源:2018年山东省潍坊市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, C = 90 ° ,分别以点 A B 为圆心,大于 1 2 AB 长为半径作弧,两弧分别交于 M N 两点,过 M N 两点的直线交 AC 于点 E ,若 AC = 6 BC = 3 ,则 CE 的长为 (    )

A. 9 4 B. 11 2 C. 3 D. 3 2

来源:2016年辽宁省锦州市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

初中数学线段垂直平分线的性质试题