初中数学

如图,在 Rt Δ ABC 中, C = 90 ° ,点 O D 分别为 AB BC 的中点,连接 OD ,作 O AC 相切于点 E ,在 AC 边上取一点 F ,使 DF = DO ,连接 DF

(1)判断直线 DF O 的位置关系,并说明理由;

(2)当 A = 30 ° CF = 2 时,求 O 的半径.

来源:2018年辽宁省本溪市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图1, PAQ = 90 ° ,分别在 PAQ 的两边 AP AQ 上取点 B E ,使 AB = AE ,点 D PAQ 的平分线 AM 上, DF AB 于点 F ,点 F 在线段 AB 上(不与点 A 重合),以 AB AD 为邻边作 ABCD ,连接 CF EF

(1)猜想 CF EF 之间的关系,并证明你的猜想;

(2)如图2,连接 CE AM 于点 H

①求证: AD + 2 DH = 2 AB

②若 AB = 9 HD AH = 2 7 ,求线段 BC 的长.

来源:2018年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABM Rt Δ ADN 的斜边分别为正方形的边 AB AD ,其中 AM = AN

(1)求证: Rt Δ ABM Rt Δ AND

(2)线段 MN 与线段 AD 相交于 T ,若 AT = 1 4 AD ,求 tan ABM 的值.

来源:2018年湖南省株洲市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

在矩形 ABCD 中,点 E BC 上, AE = AD DF AE ,垂足为 F

(1)求证: DF = AB

(2)若 FDC = 30 ° ,且 AB = 4 ,求 AD

来源:2018年湖南省张家界市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

已知在 Rt Δ ABC 中, BAC = 90 ° CD ACB 的平分线,将 ACB 沿 CD 所在的直线对折,使点 B 落在点 B ' 处,连接 A B ' B B ' ,延长 CD B B ' 于点 E ,设 ABC = 2 α ( 0 ° < α < 45 ° )

(1)如图1,若 AB = AC ,求证: CD = 2 BE

(2)如图2,若 AB AC ,试求 CD BE 的数量关系(用含 α 的式子表示);

(3)如图3,将(2)中的线段 BC 绕点 C 逆时针旋转角 ( α + 45 ° ) ,得到线段 FC ,连接 EF BC 于点 O ,设 ΔCOE 的面积为 S 1 ΔCOF 的面积为 S 2 ,求 S 1 S 2 (用含 α 的式子表示).

来源:2018年湖南省岳阳市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图1,在矩形 ABCD 中, E AD 的中点,以点 E 为直角顶点的直角三角形 EFG 的两边 EF EG 分别过点 B C F = 30 °

(1)求证: BE = CE

(2)将 ΔEFG 绕点 E 按顺时针方向旋转,当旋转到 EF AD 重合时停止转动,若 EF EG 分别与 AB BC 相交于点 M N (如图 2 )

①求证: ΔBEM ΔCEN

②若 AB = 2 ,求 ΔBMN 面积的最大值;

③当旋转停止时,点 B 恰好在 FG 上(如图 3 ) ,求 sin EBG 的值.

来源:2018年湖南省益阳市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, E AB 的中点,连接 DE CE

(1)求证: ΔADE ΔBCE

(2)若 AB = 6 AD = 4 ,求 ΔCDE 的周长.

来源:2018年湖南省湘西州中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, AF = BE AE DF 相交于点 O

(1)求证: ΔDAF ΔABE

(2)求 AOD 的度数.

来源:2018年湖南省湘潭市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图,已知四边形 ABCD 中,对角线 AC BD 相交于点 O ,且 OA = OC OB = OD ,过 O 点作 EF BD ,分别交 AD BC 于点 E F

(1)求证: ΔAOE ΔCOF

(2)判断四边形 BEDF 的形状,并说明理由.

来源:2018年湖南省娄底市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

已知:如图,点 A F E C 在同一直线上, AB / / DC AB = CD B = D

(1)求证: ΔABE ΔCDF

(2)若点 E G 分别为线段 FC FD 的中点,连接 EG ,且 EG = 5 ,求 AB 的长.

来源:2018年湖南省怀化市中考数学试卷
  • 更新:2021-05-08
  • 题型:未知
  • 难度:未知

如图,已知线段 AC BD 相交于点 E AE = DE BE = CE

(1)求证: ΔABE ΔDCE

(2)当 AB = 5 时,求 CD 的长.

来源:2018年湖南省衡阳市中考数学试卷
  • 更新:2021-05-08
  • 题型:未知
  • 难度:未知

如图,已知 O 是等边三角形 ABC 的外接圆,点 D 在圆上,在 CD 的延长线上有一点 F ,使 DF = DA AE / / BC CF E

(1)求证: EA O 的切线;

(2)求证: BD = CF

来源:2018年湖南省常德市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

如图示,正方形 ABCD 的顶点 A 在等腰直角三角形 DEF 的斜边 EF 上, EF BC 相交于点 G ,连接 CF

①求证: ΔDAE ΔDCF

②求证: ΔABG ΔCFG

来源:2017年湖南省株洲市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中,边 AB 的垂直平分线交 AD 于点 E ,交 CB 的延长线于点 F ,连接 AF BE

(1)求证: ΔAGE ΔBGF

(2)试判断四边形 AFBE 的形状,并说明理由.

来源:2017年湖南省张家界市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 为平行四边形, F CD 的中点,连接 AF 并延长与 BC 的延长线交于点 E .求证: BC = CE

来源:2017年湖南省益阳市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质解答题