如图,点 为正方形 的对角线 上的一点,连接 并延长交 于点 ,交 的延长线于点 , 是 的外接圆,连接 .
(1)求证: 是 的切线;
(2)若 ,正方形 的边长为4,求 的半径和线段 的长.
在 中, , 是 内一点,连接 , ,在 左侧作 ,使 ,以 和 为邻边作 ,连接 , .
(1)若 , .
①如图1,当 , , 三点共线时, 与 之间的数量关系为 .
②如图2,当 , , 三点不共线时,①中的结论是否仍然成立?请说明理由.
(2)若 , , ,且 , , 三点共线,求 的值.
在 中, , 是 内一点,连接 , ,在 左侧作 ,使 ,以 和 为邻边作 ,连接 , .
(1)若 , .
①如图1,当 , , 三点共线时, 与 之间的数量关系为 .
②如图2,当 , , 三点不共线时,①中的结论是否仍然成立?请说明理由.
(2)若 , , ,且 , , 三点共线,求 的值.
已知:在 中, ,点 是 边上一点,连接 ,点 是线段 延长线上一点,连接 , ,使 ,过点 作 ,交 于点 .
(1)①如图1,当 时,线段 与 之间的数量关系是 .
②如图2,当 时,线段 与 之间的数量关系是 .
(2)如图3,当 时,线段 与 之间具有怎样的数量关系?请说明理由.
(3)如图4,当 时,直接写出线段 与 之间的数量关系.(用含 的式子表示)
已知: 是等腰三角形, , .点 在边 上,点 在边 上(点 、点 不与所在线段端点重合), ,连接 , ,射线 ,延长 交射线 于点 ,点 在直线 上,且 .
(1)如图,当 时
①求证: ;
②求 的度数;
(2)当 ,其它条件不变时, 的度数是 ;(用含 的代数式表示)
(3)若 是等边三角形, ,点 是 边上的三等分点,直线 与直线 交于点 ,请直接写出线段 的长.
在 和 中, , .且 ,点 在 的内部,连接 , 和 ,并且 .
(1)如图①,当 时,线段 与 的数量关系为 ,线段 , , 的数量关系为 ;
(2)如图②,当 时,请写出线段 , , 的数量关系,并说明理由;
(3)在(2)的条件下,当点 在线段 上时,若 ,请直接写出 的面积.
如图1,以 的较短边 为一边作菱形 ,使点 落在边 上,连接 ,交 于点 .
(1)猜想 与 的数量关系,并说明理由;
(2)延长 、 交于点 ,其他条件不变:
①如图2,若 ,求 的值;
②如图3,若 ,直接写出 的值(用含 的三角函数表示)
在 中, ,点 是 的中点,点 是 上的一个动点(点 不与点 , , 重合).过点 ,点 作直线 的垂线,垂足分别为点 和点 ,连接 , .
(1)如图1,请直接写出线段 与 的数量关系;
(2)如图2,当 时,请判断线段 与 之间的数量关系和位置关系,并说明理由
(3)若 , ,当 为等腰三角形时,请直接写出线段 的长.
如图, 是 的直径, , 是 的中点,连接 并延长到点 ,使 .连接 交 于点 ,连接 , .
(1)求证:直线 是 的切线;
(2)若 ,求 的长.
如图,在 中, , , 于点 .
(1)如图1,点 , 在 , 上,且 .求证: ;
(2)点 , 分别在直线 , 上,且 .
①如图2,当点 在 的延长线上时,求证: ;
②当点 在点 , 之间,且 时,已知 ,直接写出线段 的长.
如图, 中, , 于点 , ,且 在 下方.点 , 分别是射线 ,射线 上的动点,且点 不与点 重合,点 不与点 重合,连接 ,过点 作 于点 ,连接 .
(1)若 , .
①如图1,当点 在线段 上运动时,请直接写出线段 和线段 的数量关系和位置关系;
②如图2,当点 运动到线段 的延长线上时,试判断①中的结论是否成立,并说明理由;
(2)若 ,请直接写出当线段 和线段 满足什么数量关系时,能使(1)中①的结论仍然成立(用含 的三角函数表示).
如图 为等边三角形,以 为边在 外作正方形 ,延长 分别交 、 的延长线于点 , , 于点 , 于点 ,连接 .
(1)判断 和 是否全等,并说明理由;
(2)求证: ;
(3)已知 ,若点 是直线 上的动点,请直接写出 周长的最小值.
阅读下面材料:
小明遇到这样一个问题:
如图1, 中, ,点 在 上,且 ,求证: .
小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:
方法1:如图2,作 平分 ,与 相交于点 .
方法2:如图3,作 ,与 相交于点 .
(1)根据阅读材料,任选一种方法,证明 .
用学过的知识或参考小明的方法,解决下面的问题:
(2)如图4, 中,点 在 上,点 在 上,且 ,点 在 上,且 ,延长 、 ,相交于点 ,且 .
①在图中找出与 相等的角,并加以证明;
②若 ,猜想线段 与 的数量关系,并证明你的猜想.