初中数学

如图, OF MON 的平分线,点 A 在射线 OM 上, P Q 是直线 ON 上的两动点,点 Q 在点 P 的右侧,且 PQ = OA ,作线段 OQ 的垂直平分线,分别交直线 OF ON 于点 B 、点 C ,连接 AB PB

(1)如图1,当 P Q 两点都在射线 ON 上时,请直接写出线段 AB PB 的数量关系;

(2)如图2,当 P Q 两点都在射线 ON 的反向延长线上时,线段 AB PB 是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;

(3)如图3, MON = 60 ° ,连接 AP ,设 AP OQ = k ,当 P Q 两点都在射线 ON 上移动时, k 是否存在最小值?若存在,请直接写出 k 的最小值;若不存在,请说明理由.

来源:2017年辽宁省抚顺市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

已知: ΔABC ΔADE 按如图所示方式放置,点 D ΔABC 内,连接 BD CD CE ,且 DCE = 90 °

(1)如图①,当 ΔABC ΔADE 均为等边三角形时,试确定 AD BD CD 三条线段的关系,并说明理由;

(2)如图②,当 BA = BC = 2 AC DA = DE = 2 AE 时,试确定 AD BD CD 三条线段的关系,并说明理由;

(3)如图③,当 AB : BC : AC = AD : DE : AE = m : n : p 时,请直接写出 AD BD CD 三条线段的关系.

来源:2017年辽宁省丹东市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图1,四边形 ABCD 的对角线 AC BD 相交于点 O OB = OD OC = OA + AB AD = m BC = n ABD + ADB = ACB

(1)填空: BAD ACB 的数量关系为  BAD + ACB = 180 °  

(2)求 m n 的值;

(3)将 ΔACD 沿 CD 翻折,得到△ A ' CD (如图 2 ) ,连接 BA ' ,与 CD 相交于点 P .若 CD = 5 + 1 2 ,求 PC 的长.

来源:2017年辽宁省大连市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, BE AC ,垂足 E CA 的延长线上, DF AC ,垂足 F AC 的延长线上,求证: AE = CF

来源:2017年辽宁省大连市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

已知,在 ΔABC 中,点 D AB 上,点 E BC 延长线上一点,且 AD = CE ,连接 DE AC 于点 F

(1)猜想证明:如图1,在 ΔABC 中,若 AB = BC ,学生们发现: DF = EF .下面是两位学生的证明思路:

思路1:过点 D DG / / BC ,交 AC 于点 G ,可证 ΔDFG ΔEFC 得出结论;

思路2:过点 E EH / / AB ,交 AC 的延长线于点 H ,可证 ΔADF ΔHEF 得出结论;

请你参考上面的思路,证明 DF = EF (只用一种方法证明即可).

(2)类比探究:在(1)的条件下(如图 1 ) ,过点 D DM AC 于点 M ,试探究线段 AM MF FC 之间满足的数量关系,并证明你的结论.

(3)延伸拓展:如图2,在 ΔABC 中,若 AB = AC ABC = 2 BAC AB BC = m ,请你用尺规作图在图2中作出 AD 的垂直平分线交 AC 于点 N (不写作法,只保留作图痕迹),并用含 m 的代数式直接表示 NF AC 的值.

来源:2017年辽宁省朝阳市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = AC ABC = α ,过点 A 作直线 MN ,使 MN / / BC ,点 D 在直线 MN 上,作射线 BD ,将射线 BD 绕点 B 顺时针旋转角 α 后交直线 AC 于点 E

(1)如图①,当 α = 60 ° ,且点 D 在射线 AN 上时,直接写出线段 AB AD AE 的数量关系.

(2)如图②,当 α = 45 ° ,且点 D 在射线 AN 上时,直写出线段 AB AD AE 的数量关系,并说明理由.

(3)当 α = 30 ° 时,若点 D 在射线 AM 上, ABE = 15 ° AD = 3 1 ,请直接写出线段 AE 的长度.

来源:2017年辽宁省本溪市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,一次函数 y = 3 4 x + 6 的图象交 x 轴于点 A 、交 y 轴于点 B ABO 的平分线交 x 轴于点 C ,过点 C 作直线 CD AB ,垂足为点 D ,交 y 轴于点 E

(1)求直线 CE 的解析式;

(2)在线段 AB 上有一动点 P (不与点 A B 重合),过点 P 分别作 PM x 轴, PN y 轴,垂足为点 M N ,是否存在点 P ,使线段 MN 的长最小?若存在,请直接写出点 P 的坐标;若不存在,请说明理由.

来源:2017年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图1,在 Rt Δ ABC 中, ACB = 90 ° B = 30 ° ,点 M AB 的中点,连接 MC ,点 P 是线段 BC 延长线上一点,且 PC < BC ,连接 MP AC 于点 H .将射线 MP 绕点 M 逆时针旋转 60 ° 交线段 CA 的延长线于点 D

(1)找出与 AMP 相等的角,并说明理由.

(2)如图2, CP = 1 2 BC ,求 AD BC 的值.

(3)在(2)的条件下,若 MD = 13 3 ,求线段 AB 的长.

来源:2019年辽宁省营口市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, AB = AC DE 垂直平分 AB ,交线段 BC 于点 E (点 E 与点 C 不重合),点 F AC 上一点,点 G AB 上一点(点 G 与点 A 不重合),且 GEF + BAC = 180 °

(1)如图1,当 B = 45 ° 时,线段 AG CF 的数量关系是  

(2)如图2,当 B = 30 ° 时,猜想线段 AG CF 的数量关系,并加以证明.

(3)若 AB = 6 DG = 1 cos B = 3 4 ,请直接写出 CF 的长.

来源:2019年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,已知矩形 ABCD 中,点 E F 分别是 AD AB 上的点, EF EC ,且 AE = CD

(1)求证: AF = DE

(2)若 DE = 2 5 AD ,求 tan AFE

来源:2019年宁夏中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

已知点 E 为正方形 ABCD 的边 AD 上一点,连接 BE ,过点 C CN BE ,垂足为 M ,交 AB 于点 N

(1)求证: ΔABE ΔBCN

(2)若 N AB 的中点,求 tan ABE

来源:2018年宁夏中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,点 E F 分别是矩形 ABCD 的边 AB CD 上的一点,且 DF = BE .求证: AF = CE

来源:2019年福建省中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图, ABCD 的对角线 AC BD 相交于点 O EF 过点 O 且与 AD BC 分别相交于点 E F .求证: OE = OF

来源:2018年福建省中考数学试卷(B卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图, ABCD 的对角线 AC BD 相交于点 O EF 过点 O 且与 AD BC 分别相交于点 E F .求证: OE = OF

来源:2018年福建省中考数学试卷(A卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图1,在菱形 ABCD 中, AB = 6 5 tan ABC = 2 ,点 E 从点 D 出发,以每秒1个单位长度的速度沿着射线 DA 的方向匀速运动,设运动时间为 t (秒 ) ,将线段 CE 绕点 C 顺时针旋转一个角 α ( α = BCD ) ,得到对应线段 CF

(1)求证: BE = DF

(2)当 t =          秒时, DF 的长度有最小值,最小值等于            

(3)如图2,连接 BD EF BD EC EF 于点 P Q ,当 t 为何值时, ΔEPQ 是直角三角形?

(4)如图3,将线段 CD 绕点 C 顺时针旋转一个角 α ( α = BCD ) ,得到对应线段 CG .在点 E 的运动过程中,当它的对应点 F 位于直线 AD 上方时,直接写出点 F 到直线 AD 的距离 y 关于时间 t 的函数表达式.

来源:2016年江苏省镇江市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质解答题