如图,在平行四边形 中, 为 边的中点,连接 ,若 的延长线和 的延长线相交于点 .
(1)求证: ;
(2)连接 和 相交于点为 ,若 的面积为2,求平行四边形 的面积.
在一次数学研究性学习中,小兵将两个全等的直角三角形纸片 和 拼在一起,使点 与点 重合,点 与点 重合(如图 ,其中 , , ,并进行如下研究活动.
活动一:将图1中的纸片 沿 方向平移,连结 , (如图 ,当点 与点 重合时停止平移.
[思考]图2中的四边形 是平行四边形吗?请说明理由.
[发现]当纸片 平移到某一位置时,小兵发现四边形 为矩形(如图 .求 的长.
活动二:在图3中,取 的中点 ,再将纸片 绕点 顺时针方向旋转 度 ,连结 , (如图 .
[探究]当 平分 时,探究 与 的数量关系,并说明理由.
如图, 是半圆 的直径, , 是半圆 上不同于 , 的两点, , 与 相交于点 . 是半圆 所在圆的切线,与 的延长线相交于点 .
(1)求证: ;
(2)若 ,求证: 平分 .
如图,在矩形 中,点 在边 上,点 在 的延长线上,且 .
求证:(1) ;
(2)四边形 是平行四边形.
如图, 与 相切于点 , 交 于点 , 的延长线交 于点 , 是 上不与 , 重合的点, .
(1)求 的大小;
(2)若 的半径为3,点 在 的延长线上,且 ,求证: 与 相切.
如图,在 中, , ,以点 为圆心, 为半径的圆交 的延长线于点 ,过点 作 的平行线,交 于点 ,连接 .
(1)求证: 为 的切线;
(2)若 ,求弧 的长.
四边形 是边长为2的正方形, 是 的中点,连结 ,点 是射线 上一动点(不与点 重合),连结 ,交 于点 .
(1)如图1,当点 是 边的中点时,求证: ;
(2)如图2,当点 与点 重合时,求 的长;
(3)在点 运动的过程中,当线段 为何值时, ?请说明理由.
如图,在圆 中,弦 等于弦 ,且相交于点 ,其中 、 为 、 中点.
(1)证明: ;
(2)连接 、 、 ,若 ,证明:四边形 为矩形.
如图,在正方形 中,对角线 , 相交于点 ,点 , 是对角线 上的两点,且 .连接 , , , .
(1)证明: .
(2)若 , ,求四边形 的周长.
如图,在 中, , 是对角线 上的两点(点 在点 左侧),且 .
(1)求证:四边形 是平行四边形;
(2)当 , , 时,求 的长.
如图,在 中, , 与 相切于点 ,过点 作 的垂线交 的延长线于点 ,交 于点 ,连结 .
(1)求证: 是 的切线.
(2)若 , ,求 的长.
如图, 为等腰直角三角形,延长 至点 使 , 是矩形,其对角线 , 交于点 ,连接 交 于点 .
(1)求证: ;
(2)求 的值.