如图, 的顶点 , ,点 在 轴的正半轴上,延长 交 轴于点 .将 绕点 顺时针旋转得到△ ,当点 的对应点 落在 上时, 的延长线恰好经过点 ,则点 的坐标为
A. |
, |
B. |
, |
C. |
, |
D. |
, |
如图,正方形 中, , 为 的中点,将 沿 翻折得到 ,延长 交 于 , ,垂足为 ,连接 、 .以下结论:① ;② ;③ ;④ ;⑤ ;其中正确的个数是
A.2B.3C.4D.5
如图,将矩形 的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形 , 厘米, 厘米,则边 的长是
A.12厘米B.16厘米C.20厘米D.28厘米
已知 ,求作 ,作法:
(1)以 为圆心,任意长为半径画弧分别交 , 于点 , ;
(2)分别以 , 为圆心,以 长为半径在角的内部画弧交于点 ;
(3)作射线 ,则 为 的平分线,可得
根据以上作法,某同学有以下3种证明思路:
①可证明 ,得 ,可得;
②可证明四边形 为菱形, , 互相垂直平分,得 ,可得;
③可证明 为等边三角形, , 互相垂直平分,从而得 ,可得.
你认为该同学以上3种证明思路中,正确的有
A.①②B.①③C.②③D.①②③
如图, 、 、 、 是四根长度均为 的火柴棒,点 、 、 共线.若 , ,则线段 的长度是
A. |
|
B. |
|
C. |
|
D. |
|
如图,点 的坐标为 ,点 是 轴正半轴上的一动点,以 为边作等腰直角 ,使 ,设点 的横坐标为 ,点 的纵坐标为 ,能表示 与 的函数关系的图象大致是
A.B.
C.D.
如图,在矩形 中, 是 边的中点,沿 对折矩形 ,使 点落在点 处,折痕为 ,连接 并延长 交 于 点,连接 并延长 交 于 点.给出以下结论:
①四边形 为平行四边形;
② ;
③ 为等腰三角形;
④ .
其中正确结论的个数为
A.1B.2C.3D.4
如图,在 中, , , ,将 沿直线 AC翻折至 所在的平面内,得 .过点 A作 ,使 ,与 的延长线交于点 E,连接 BE,则线段 BE的长为( )
A. |
|
B. |
3 |
C. |
|
D. |
4 |
如图, 和 都是等腰直角三角形, , , 的顶点 在 的斜边 上,若 , ,则两个三角形重叠部分的面积为
A. B. C. D.
如图,在矩形纸片 中,点 、 分别在矩形的边 、 上,将矩形纸片沿 、 折叠,点 落在 处,点 落在 处,点 、 、 恰好在同一直线上,若 , , ,则 的长是
A. |
2 |
B. |
|
C. |
|
D. |
3 |
如图,在 和 中, , , .连接 ,连接 并延长交 , 于点 , .若 恰好平分 ,则下列结论错误的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中,对角线 , , , 为 的中点, 为边 上一点,直线 交 于点 ,连结 , .下列结论不成立的是
A.四边形 为平行四边形
B.若 ,则四边形 为矩形
C.若 ,则四边形 为菱形
D.若 ,则四边形 为正方形