初中数学

已知:如图, E ABCD 的边 BC 延长线上的一点,且 CE = BC

求证: ΔABC ΔDCE

来源:2020年山东省淄博市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

ΔABC 中, ACB = 90 ° CD 是中线, AC = BC ,一个以点 D 为顶点的 45 ° 角绕点 D 旋转,使角的两边分别与 AC BC 的延长线相交,交点分别为点 E F DF AC 交于点 M DE BC 交于点 N

(1)如图1,若 CE = CF ,求证: DE = DF

(2)如图2,在 EDF 绕点 D 旋转的过程中,试证明 C D 2 = CE · CF 恒成立;

(3)若 CD = 2 CF = 2 ,求 DN 的长.

来源:2020年山东省枣庄市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在等边三角形 ABC 中,点 E 是边 AC 上一定点,点 D 是直线 BC 上一动点,以 DE 为一边作等边三角形 DEF ,连接 CF

【问题解决】

如图1,若点 D 在边 BC 上,求证: CE + CF = CD

【类比探究】

如图2,若点 D 在边 BC 的延长线上,请探究线段 CE CF CD 之间存在怎样的数量关系?并说明理由.

来源:2020年山东省烟台市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图1,在 ΔABC 中, A = 90 ° AB = AC = 2 + 1 ,点 D E 分别在边 AB AC 上,且 AD = AE = 1 ,连接 DE .现将 ΔADE 绕点 A 顺时针方向旋转,旋转角为 α ( 0 ° < α < 360 ° ) ,如图2,连接 CE BD CD

(1)当 0 ° < α < 180 ° 时,求证: CE = BD

(2)如图3,当 α = 90 ° 时,延长 CE BD 于点 F ,求证: CF 垂直平分 BD

(3)在旋转过程中,求 ΔBCD 的面积的最大值,并写出此时旋转角 α 的度数.

来源:2020年山东省潍坊市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,对角线 BD AD AB = 10 AD = 6 O BD 的中点, E 为边 AB 上一点,直线 EO CD 于点 F ,连结 DE BF .下列结论不成立的是 (    )

A.四边形 DEBF 为平行四边形

B.若 AE = 3 . 6 ,则四边形 DEBF 为矩形

C.若 AE = 5 ,则四边形 DEBF 为菱形

D.若 AE = 4 . 8 ,则四边形 DEBF 为正方形

来源:2020年山东省威海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

ΔABC ΔAED 均为等腰三角形,且 BAC = EAD = 90 °

(1)如图(1),点 B DE 的中点,判定四边形 BEAC 的形状,并说明理由;

(2)如图(2),若点 G EC 的中点,连接 GB 并延长至点 F ,使 CF = CD

求证:① EB = DC

EBG = BFC

来源:2020年山东省泰安市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AC BD 相交于点 O ,过点 B BF AC CD 于点 F ,交 AC 于点 M ,过点 D DE / / BF AB 于点 E ,交 AC 于点 N ,连接 FN EM .则下列结论:

DN = BM

EM / / FN

AE = FC

④当 AO = AD 时,四边形 DEBF 是菱形.

其中,正确结论的个数是 (    )

A.

1个

B.

2个

C.

3个

D.

4个

来源:2020年山东省泰安市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E BC 的中点,连接 AE 并延长交 DC 的延长线于点 F ,连接 BF AC ,若 AD = AF ,求证:四边形 ABFC 是矩形.

来源:2020年山东省聊城市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图1,四边形 ABCD 的对角线 AC BD 相交于点 O OA = OC OB = OD + CD

(1)过点 A AE / / DC BD 于点 E ,求证: AE = BE

(2)如图2,将 ΔABD 沿 AB 翻折得到 ΔAB D '

①求证: B D ' / / CD

②若 A D ' / / BC ,求证: C D 2 = 2 OD · BD

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° ,点 E AC 的延长线上, ED AB 于点 D ,若 BC = ED ,求证: CE = DB

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

问题探究:

小红遇到这样一个问题:如图1, ΔABC 中, AB = 6 AC = 4 AD 是中线,求 AD 的取值范围.她的做法是:延长 AD E ,使 DE = AD ,连接 BE ,证明 ΔBED ΔCAD ,经过推理和计算使问题得到解决.

请回答:(1)小红证明 ΔBED ΔCAD 的判定定理是:   

(2) AD 的取值范围是  

方法运用:

(3)如图2, AD ΔABC 的中线,在 AD 上取一点 F ,连结 BF 并延长交 AC 于点 E ,使 AE = EF ,求证: BF = AC

(4)如图3,在矩形 ABCD 中, AB BC = 1 2 ,在 BD 上取一点 F ,以 BF 为斜边作 Rt Δ BEF ,且 EF BE = 1 2 ,点 G DF 的中点,连接 EG CG ,求证: EG = CG

来源:2020年山东省德州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 3 + 2 AD = 3 .把 AD 沿 AE 折叠,使点 D 恰好落在 AB 边上的 D ' 处,再将 ΔAED ' 绕点 E 顺时针旋转 α ,得到△ A ' ED ' ' ,使得 EA ' 恰好经过 BD ' 的中点 F A ' D ' ' AB 于点 G ,连接 AA ' .有如下结论:① A ' F 的长度是 6 - 2 ;②弧 D ' D ' ' 的长度是 5 3 12 π ;③△ A ' AF A ' EG ;④△ AA ' F ΔEGF .上述结论中,所有正确的序号是      

来源:2020年山东省德州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, AM BN 是它的两条切线,过 O 上一点 E 作直线 DC ,分别交 AM BN 于点 D C ,且 DA = DE

(1)求证:直线 CD O 的切线;

(2)求证: O A 2 = DE · CE

来源:2020年山东省滨州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,过 ABCD 对角线 AC BD 的交点 E 作两条互相垂直的直线,分别交边 AB BC CD DA 于点 P M Q N

(1)求证: ΔPBE ΔQDE

(2)顺次连接点 P M Q N ,求证:四边形 PMQN 是菱形.

来源:2020年山东省滨州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,点 P 是正方形 ABCD 内一点,且点 P 到点 A B C 的距离分别为 2 3 2 、4,则正方形 ABCD 的面积为      

来源:2020年山东省滨州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题