如图, 中, ,顶点 , 都在反比例函数 的图象上,直线 轴,垂足为 ,连结 , ,并延长 交 于点 ,当 时,点 恰为 的中点,若 , .
(1)求反比例函数的解析式;
(2)求 的度数.
已知锐角 ,如图,按下列步骤作图:①在 边取一点 ,以 为圆心, 长为半径画 ,交 于点 ,连接 .②以 为圆心, 长为半径画 ,交 于点 ,连接 .则 的度数为
A. |
|
B. |
|
C. |
|
D. |
|
如图,将矩形 沿对角线 折叠,点 落在点 处, 交 于点 ,已知 ,则 的度数为
A. B. C. D.
如图,在 中, , ,点 是 边上任意一点,过点 作 交 于点 ,则 的度数是
A. B. C. D.
定理:三角形的一个外角等于与它不相邻的两个内角的和.
已知:如图, 是 的外角.求证: .
证法1:如图, (三角形内角和定理), 又 (平角定义), (等量代换). (等式性质). |
证法2:如图, , , 且 (量角器测量所得) 又 (计算所得) (等量代换). |
下列说法正确的是
A. |
证法1还需证明其他形状的三角形,该定理的证明才完整 |
B. |
证法1用严谨的推理证明了该定理 |
C. |
证法2用特殊到一般法证明了该定理 |
D. |
证法2只要测量够一百个三角形进行验证,就能证明该定理 |
如图,等腰直角三角形 中, , ,将 绕点 顺时针旋转 ,得到 ,连结 ,过点 作 交 的延长线于点 ,连结 ,则 的度数
A.随着 的增大而增大B.随着 的增大而减小
C.不变D.随着 的增大,先增大后减小
如图,沿 方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从 上的一点 取 , , .那么另一边开挖点 离 多远正好使 , , 三点在一直线上 取1.732,结果取整数)?