用数形结合等思想方法确定二次函数 的图象与反比例函数 的图象的交点的横坐标 所在的范围是
A. |
|
B. |
|
C. |
|
D. |
|
如图所示,抛物线与 轴交于 、 两点,与 轴交于点 ,且 , , ,抛物线的对称轴与直线 交于点 ,与 轴交于点 .
(1)求抛物线的解析式;
(2)若点 是对称轴上的一个动点,是否存在以 、 、 为顶点的三角形与 相似?若存在,求出点 的坐标,若不存在,请说明理由;
(3) 为 的中点,一个动点 从 点出发,先到达 轴上的点 ,再走到抛物线对称轴上的点 ,最后返回到点 .要使动点 走过的路程最短,请找出点 、 的位置,写出坐标,并求出最短路程.
(4)点 是抛物线上位于 轴上方的一点,点 在 轴上,是否存在以点 为直角顶点的等腰 ?若存在,求出点 的坐标,若不存在,请说明理由.
在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为"雁点".例如 , 都是"雁点".
(1)求函数 图象上的"雁点"坐标;
(2)若抛物线 上有且只有一个"雁点" ,该抛物线与 轴交于 、 两点(点 在点 的左侧).当 时.
①求 的取值范围;
②求 的度数;
(3)如图,抛物线 与 轴交于 、 两点(点 在点 的左侧), 是抛物线 上一点,连接 ,以点 为直角顶点,构造等腰 ,是否存在点 ,使点 恰好为"雁点"?若存在,求出点 的坐标;若不存在,请说明理由.
如图,在平面直角坐标系 中,平行四边形 的 边与 轴交于 点, 是 的中点, 、 、 的坐标分别为 , , .
(1)求过 、 、 三点的抛物线的解析式;
(2)试判断抛物线的顶点是否在直线 上;
(3)设过 与 平行的直线交 轴于 , 是线段 之间的动点,射线 与抛物线交于另一点 ,当 的面积最大时,求 的坐标.
在平面直角坐标系中,抛物线 与 轴交于点 和点 , ,顶点坐标记为 , .抛物线 的顶点坐标记为 , .
(1)写出 点坐标;
(2)求 , 的值(用含 的代数式表示)
(3)当 时,探究 与 的大小关系;
(4)经过点 和点 的直线与抛物线 , 的公共点恰好为3个不同点时,求 的值.
抛物线 交 轴于 , 两点 在 的左边).
(1) 的顶点 在 轴的正半轴上,顶点 在 轴右侧的抛物线上;
①如图(1),若点 的坐标是 ,点 的横坐标是 ,直接写出点 , 的坐标.
②如图(2),若点 在抛物线上,且 的面积是12,求点 的坐标.
(2)如图(3), 是原点 关于抛物线顶点的对称点,不平行 轴的直线 分别交线段 , (不含端点)于 , 两点.若直线 与抛物线只有一个公共点,求证: 的值是定值.
已知抛物线 , , 是常数), .下列四个结论:
①若抛物线经过点 ,则 ;
②若 ,则方程 一定有根 ;
③抛物线与 轴一定有两个不同的公共点;
④点 , , , 在抛物线上,若 ,则当 时, .
其中正确的是 (填写序号).
在平面直角坐标系中,抛物线 与 轴交于点 和点 ,与 轴交于点 ,顶点 的坐标为 .
(1)直接写出抛物线的解析式;
(2)如图1,若点 在抛物线上且满足 ,求点 的坐标;
(3)如图2, 是直线 上一个动点,过点 作 轴交抛物线于点 , 是直线 上一个动点,当 为等腰直角三角形时,直接写出此时点 及其对应点 的坐标.
如图,已知抛物线 的对称轴在 轴右侧,抛物线与 轴交于点 和点 ,与 轴的负半轴交于点 ,且 ,则下列结论:① ;② ;③ ;④当 时,在 轴下方的抛物线上一定存在关于对称轴对称的两点 , (点 在点 左边),使得 ,其中正确的有
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
已知抛物线 与 轴交于点 和 ,与 轴交于点 ,顶点为 ,点 在抛物线对称轴上且位于 轴下方,连 交抛物线于 ,连 、 .
(1)求抛物线的解析式;
(2)如图1,当 时,求 点的横坐标;
(3)如图2,过点 作 轴的平行线 ,过 作 于 ,若 ,求 点的坐标.
如图,抛物线 交 轴于 , 两点,交 轴于点 ,点 为线段 上的动点.
(1)求抛物线的解析式;
(2)求 的最小值;
(3)过点 作 交抛物线的第四象限部分于点 ,连接 , ,记 与 面积分别为 , ,设 ,求点 坐标,使得 最大,并求此最大值.
抛物线 , , 为常数)开口向下且过点 , , ,下列结论:① ;② ;③ ;④若方程 有两个不相等的实数根,则 .其中正确结论的个数是
A. |
4 |
B. |
3 |
C. |
2 |
D. |
1 |
抛物线 与 轴相交于点 ,且抛物线的对称轴为 , 为对称轴与 轴的交点.
(1)求抛物线的解析式;
(2)在 轴上方且平行于 轴的直线与抛物线从左到右依次交于 、 两点,若 是等腰直角三角形,求 的面积;
(3)若 是对称轴上一定点, 是抛物线上的动点,求 的最小值(用含 的代数式表示).
二次函数 、 、 是常数,且 的自变量 与函数值 的部分对应值如下表:
|
|
|
0 |
1 |
2 |
|
|
|
|
2 |
2 |
|
|
且当 时,对应的函数值 .有以下结论:
① ;② ;③关于 的方程 的负实数根在 和0之间;④ 和 在该二次函数的图象上,则当实数 时, .
其中正确的结论是
A. |
①② |
B. |
②③ |
C. |
③④ |
D. |
②③④ |