如图1,已知一次函数 的图象与 轴、 轴分别交于 、 两点,抛物线 过 、 两点,且与 轴交于另一点 .
(1)求 、 的值;
(2)如图1,点 为 的中点,点 在线段 上,且 ,连接 并延长交抛物线于点 ,求点 的坐标;
(3)将直线 绕点 按逆时针方向旋转 后交 轴于点 ,连接 ,如图2, 为 内一点,连接 、 、 ,分别以 、 为边,在他们的左侧作等边 ,等边 ,连接
①求证: ;
②求 的最小值,并求出当 取得最小值时点 的坐标.
已知, , 是一元二次方程 的两个实数根,且 ,抛物线 的图象经过点 , ,如图所示.
(1)求这个抛物线的解析式;
(2)设(1)中的抛物线与 轴的另一个交点为 ,抛物线的顶点为 ,试求出点 , 的坐标,并判断 的形状;
(3)点 是直线 上的一个动点(点 不与点 和点 重合),过点 作 轴的垂线,交抛物线于点 ,点 在直线 上,距离点 为 个单位长度,设点 的横坐标为 , 的面积为 ,求出 与 之间的函数关系式.
(概念认识)
城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系 ,对两点 , 和 , ,用以下方式定义两点间距离: .
(数学理解)
(1)①已知点 ,则 .
②函数 的图象如图①所示, 是图象上一点, ,则点 的坐标是 .
(2)函数 的图象如图②所示.求证:该函数的图象上不存在点 ,使 .
(3)函数 的图象如图③所示, 是图象上一点,求 的最小值及对应的点 的坐标.
(问题解决)
(4)某市要修建一条通往景观湖的道路,如图④,道路以 为起点,先沿 方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)
如图,在平面直角坐标系中,抛物线 经过 , , 三点.
(1)求抛物线的解析式及顶点 的坐标;
(2)将(1)中的抛物线向下平移 个单位长度,再向左平移 个单位长度,得到新抛物线.若新抛物线的顶点 在 内,求 的取值范围;
(3)点 为线段 上一动点(点 不与点 , 重合),过点 作 轴的垂线交(1)中的抛物线于点 ,当 与 相似时,求 的面积.
如图,在平面直角坐标系中,二次函数 的图象经过点 , , ,其对称轴与 轴交于点
(1)求二次函数的表达式及其顶点坐标;
(2)若 为 轴上的一个动点,连接 ,则 的最小值为 ;
(3) 为抛物线对称轴上一动点
①若平面内存在点 ,使得以 , , , 为顶点的四边形为菱形,则这样的点 共有 个;
②连接 , ,若 不小于 ,求 的取值范围.
已知抛物线 与 轴只有一个公共点.
(1)若抛物线与 轴的公共点坐标为 ,求 、 满足的关系式;
(2)设 为抛物线上的一定点,直线 与抛物线交于点 、 ,直线 垂直于直线 ,垂足为点 .当 时,直线 与抛物线的一个交点在 轴上,且 为等腰直角三角形.
①求点 的坐标和抛物线的解析式;
②证明:对于每个给定的实数 ,都有 、 、 三点共线.
在平面直角坐标系 中,抛物线 经过点 , .
(1)求抛物线的解析式;
(2)点 是抛物线与 轴的交点,连接 ,设点 是抛物线上在第一象限内的点, ,垂足为点 .
①是否存在点 ,使线段 的长度最大?若存在,请求出点 的坐标;若不存在,请说明理由;
②当 与 相似时,求点 的坐标.
已知抛物线 过点 .
(1)若点 , 也在该抛物线上,求 , 满足的关系式;
(2)若该抛物线上任意不同两点 , , , 都满足:当 时, ;当 时, .以原点 为心, 为半径的圆与拋物线的另两个交点为 , ,且 有一个内角为 .
①求抛物线的解析式;
②若点 与点 关于点 对称,且 , , 三点共线,求证: 平分 .
已知直线 与抛物线 相交于 、 两点(点 在点 的左侧),与 轴正半轴相交于点 ,过点 作 轴,垂足为 .
(1)若 , 轴, ,求 的值;
(2)若 ,点 的横坐标为 , ,求点 的坐标;
(3)延长 、 相交于点 ,求证: .
直线 交 轴于点 ,交 轴于点 ,顶点为 的抛物线 经过点 ,交 轴于另一点 ,连接 , , ,如图所示.
(1)直接写出抛物线的解析式和点 , , 的坐标;
(2)动点 在 上以每秒2个单位长的速度由点 向点 运动,同时动点 在 上以每秒3个单位长的速度由点 向点 运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为 秒. 交线段 于点 .
①当 时,求 的值;
②过点 作 ,垂足为点 ,过点 作 交线段 或 于点 ,当 时,求 的值.
已知抛物线 ,其中 ,且 .
(1) 直接写出关于 的一元二次方程 的一个根;
(2) 证明: 抛物线 的顶点 在第三象限;
(3) 直线 与 , 轴分别相交于 , 两点, 与抛物线 相交于 , 两点 . 设抛物线 的对称轴与 轴相交于 . 如果在对称轴左侧的抛物线上存在点 ,使得 与 相似, 并且 ,求此时抛物线的表达式 .
如图①,抛物线 与 轴交于 , 两点(点 位于点 的左侧),与 轴交于点 .已知 的面积是6.
(1)求 的值;
(2)求 外接圆圆心的坐标;
(3)如图②, 是抛物线上一点, 为射线 上一点,且 、 两点均在第三象限内, 、 是位于直线 同侧的不同两点,若点 到 轴的距离为 , 的面积为 ,且 ,求点 的坐标.
如图,二次函数 的图象经过点 , , ,直线 与 轴交于点 , 为二次函数图象上任一点.
(1)求这个二次函数的解析式;
(2)若点 在直线 的上方,过 分别作 和 轴的垂线,交直线 于不同的两点 , 在 的左侧),求 周长的最大值;
(3)是否存在点 ,使得 是以 为直角边的直角三角形?如果存在,求点 的坐标;如果不存在,请说明理由.
已知:二次函数 为常数).
(1)请写出该二次函数的三条性质;
(2)在同一直角坐标系中,若该二次函数的图象在 的部分与一次函数 的图象有两个交点,求 的取值范围.