如图,二次函数 的图象经过点 , , ,直线 与 轴交于点 , 为二次函数图象上任一点.
(1)求这个二次函数的解析式;
(2)若点 在直线 的上方,过 分别作 和 轴的垂线,交直线 于不同的两点 , 在 的左侧),求 周长的最大值;
(3)是否存在点 ,使得 是以 为直角边的直角三角形?如果存在,求点 的坐标;如果不存在,请说明理由.
如图1,对称轴为直线 的抛物线经过 、 两点,抛物线与 轴的另一交点为
(1)求抛物线的解析式;
(2)若点 为第一象限内抛物线上的一点,设四边形 的面积为 ,求 的最大值;
(3)如图2,若 是线段 上一动点,在 轴是否存在这样的点 ,使 为等腰三角形且 为直角三角形?若存在,求出点 的坐标;若不存在,请说明理由.
抛物线 与 轴交于点 , (点 在点 的左侧),与 轴交于点 ,其顶点为 .将抛物线位于直线 上方的部分沿直线 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“ ”形的新图象.
(1)点 , , 的坐标分别为 , , ;
(2)如图①,抛物线翻折后,点 落在点 处.当点 在 内(含边界)时,求 的取值范围;
(3)如图②,当 时,若 是“ ”形新图象上一动点,是否存在以 为直径的圆与 轴相切于点 ?若存在,求出点 的坐标;若不存在,请说明理由.
如图,已知抛物线 的对称轴为直线 ,且抛物线经过 , 两点,与 轴交于点 .
(1)若直线 经过 、 两点,求直线 和抛物线的解析式;
(2)在抛物线的对称轴 上找一点 ,使点 到点 的距离与到点 的距离之和最小,求出点 的坐标;
(3)设点 为抛物线的对称轴 上的一个动点,求使 为直角三角形的点 的坐标.
如图,已知抛物线 的顶点 在 轴上,并过点 ,直线 与 轴交于点 ,与抛物线 的对称轴 交于点 ,过 点的直线 与直线 相交于点 .
(1)求抛物线 的解析式;
(2) 是 上的一个动点,若以 , , 为顶点的三角形的周长最小,求点 的坐标;
(3)抛物线 上是否存在一动点 ,使以线段 为直径的圆恰好经过点 ?若存在,求点 的坐标;若不存在,请说明理由.
如图,已知抛物线 经过 的三个顶点,其中点 ,点 , 轴,点 是直线 下方抛物线上的动点.
(1)求抛物线的解析式;
(2)过点 且与 轴平行的直线 与直线 、 分别交于点 、 ,当四边形 的面积最大时,求点 的坐标;
(3)当点 为抛物线的顶点时,在直线 上是否存在点 ,使得以 、 、 为顶点的三角形与 相似,若存在,求出点 的坐标,若不存在,请说明理由.
如图1,在平面直角坐标系 中,已知点 和点 的坐标分别为 , ,将 绕点 按顺时针方向分别旋转 , 得到 △ , .抛物线 经过点 , , ;抛物线 经过点 , , .
(1)点 的坐标为 ,点 的坐标为 ;抛物线 的解析式为 .抛物线 的解析式为 ;
(2)如果点 是直线 上方抛物线 上的一个动点.
①若 时,求 点的坐标;
②如图2,过点 作 轴的垂线交直线 于点 ,交抛物线 于点 ,记 ,求 与 的函数关系式,当 时,求 的取值范围.
如图,已知直线 与抛物线 相交于 , 两点,抛物线 交 轴于点 ,交 轴正半轴于 点,抛物线的顶点为 .
(1)求抛物线的解析式及点 的坐标;
(2)设点 为直线 下方的抛物线上一动点,当 的面积最大时,求此时 的面积及点 的坐标;
(3)点 为 轴上一动点,点 是抛物线上一点,当 (点 与点 对应),求 点坐标.
若一次函数 的图象与 轴, 轴分别交于 , 两点,点 的坐标为 ,二次函数 的图象过 , , 三点,如图(1).
(1)求二次函数的表达式;
(2)如图(1),过点 作 轴交抛物线于点 ,点 在抛物线上 轴左侧),若 恰好平分 .求直线 的表达式;
(3)如图(2),若点 在抛物线上(点 在 轴右侧),连接 交 于点 ,连接 , .
①当 时,求点 的坐标;
②求 的最大值.
已知抛物线 过点 ,且抛物线上任意不同两点 , , , 都满足:当 时, ;当 时, .以原点 为圆心, 为半径的圆与抛物线的另两个交点为 , ,且 在 的左侧, 有一个内角为 .
(1)求抛物线的解析式;
(2)若 与直线 平行,且 , 位于直线 的两侧, ,解决以下问题:
①求证: 平分 ;
②求 外心的纵坐标的取值范围.
已知抛物线 与 轴只有一个公共点.
(1)若抛物线与 轴的公共点坐标为 ,求 、 满足的关系式;
(2)设 为抛物线上的一定点,直线 与抛物线交于点 、 ,直线 垂直于直线 ,垂足为点 .当 时,直线 与抛物线的一个交点在 轴上,且 为等腰直角三角形.
①求点 的坐标和抛物线的解析式;
②证明:对于每个给定的实数 ,都有 、 、 三点共线.
如图1,抛物线 与 轴交于点 ,与 轴交于点 ,在 轴上有一动点 , ,过点 作 轴的垂线交直线 于点 ,交抛物线于点 ,过点 作 于点 .
(1)求 的值和直线 的函数表达式;
(2)设 的周长为 , 的周长为 ,若 ,求 的值;
(3)如图2,在(2)条件下,将线段 绕点 逆时针旋转得到 ,旋转角为 ,连接 、 ,求 的最小值.
如图,抛物线 交 轴于 、 两点,其中点 坐标为 ,与 轴交于点 .
(1)求抛物线的函数表达式;
(2)如图①,连接 ,点 在抛物线上,且满足 .求点 的坐标;
(3)如图②,点 为 轴下方抛物线上任意一点,点 是抛物线对称轴与 轴的交点,直线 、 分别交抛物线的对称轴于点 、 .请问 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
已知抛物线 ,其中 ,且 .
(1) 直接写出关于 的一元二次方程 的一个根;
(2) 证明: 抛物线 的顶点 在第三象限;
(3) 直线 与 , 轴分别相交于 , 两点, 与抛物线 相交于 , 两点 . 设抛物线 的对称轴与 轴相交于 . 如果在对称轴左侧的抛物线上存在点 ,使得 与 相似, 并且 ,求此时抛物线的表达式 .