初中数学

在平面直角坐标系 xOy 中,抛物线 y = - 1 4 x 2 + bx + c 经过点 A ( - 2 , 0 ) B ( 8 , 0 )

(1)求抛物线的解析式;

(2)点 C 是抛物线与 y 轴的交点,连接 BC ,设点 P 是抛物线上在第一象限内的点, PD BC ,垂足为点 D

①是否存在点 P ,使线段 PD 的长度最大?若存在,请求出点 P 的坐标;若不存在,请说明理由;

②当 ΔPDC ΔCOA 相似时,求点 P 的坐标.

来源:2018年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,抛物线 y = 1 2 x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,其对称轴交抛物线于点 D ,交 x 轴于点 E ,已知 OB = OC = 6

(1)求抛物线的解析式及点 D 的坐标;

(2)连接 BD F 为抛物线上一动点,当 FAB = EDB 时,求点 F 的坐标;

(3)平行于 x 轴的直线交抛物线于 M N 两点,以线段 MN 为对角线作菱形 MPNQ ,当点 P x 轴上,且 PQ = 1 2 MN 时,求菱形对角线 MN 的长.

来源:2017年湖北省咸宁市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c ( a 0 ) 与直线 y = x + 1 相交于 A ( - 1 , 0 ) B ( 4 , m ) 两点,且抛物线经过点 C ( 5 , 0 )

(1)求抛物线的解析式;

(2)点 P 是抛物线上的一个动点(不与点 A 、点 B 重合),过点 P 作直线 PD x 轴于点 D ,交直线 AB 于点 E

①当 PE = 2 ED 时,求 P 点坐标;

②是否存在点 P 使 ΔBEC 为等腰三角形?若存在请直接写出点 P 的坐标;若不存在,请说明理由.

来源:2017年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图1,对称轴为直线 x = 1 2 的抛物线经过 B ( 2 , 0 ) C ( 0 , 4 ) 两点,抛物线与 x 轴的另一交点为 A

(1)求抛物线的解析式;

(2)若点 P 为第一象限内抛物线上的一点,设四边形 COBP 的面积为 S ,求 S 的最大值;

(3)如图2,若 M 是线段 BC 上一动点,在 x 轴是否存在这样的点 Q ,使 ΔMQC 为等腰三角形且 ΔMQB 为直角三角形?若存在,求出点 Q 的坐标;若不存在,请说明理由.

来源:2016年云南省昆明市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

抛物线 y = - x 2 + 2 x + n 经过点 M ( - 1 , 0 ) ,顶点为 C

(1)求点 C 的坐标;

(2)设直线 y = 2 x 与抛物线交于 A B 两点(点 A 在点 B 的左侧).

①在抛物线的对称轴上是否存在点 G .使 AGC = BGC ?若存在,求出点 G 的坐标;若不存在,请说明理由;

②点 P 在直线 y = 2 x 上,点 Q 在抛物线上,当以 O M P Q 为顶点的四边形是平行四边形时,求点 Q 的坐标.

来源:2016年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

已知点 A ( - 1 , 1 ) B ( 4 , 6 ) 在抛物线 y = a x 2 + bx 上,

(1)求抛物线的解析式;

(2)如图1,点 F 的坐标为 ( 0 m ) ( m > 2 ) ,直线 AF 交抛物线于另一点 G ,过点 G x 轴的垂线,垂足为 H .设抛物线与 x 轴的正半轴交于点 E ,连接 FH AE ,求证: FH / / AE

(3)如图2,直线 AB 分别交 x 轴、 y 轴于 C D 两点.点 P 从点 C 出发,沿射线 CD 方向匀速运动,速度为每秒 2 个单位长度;同时点 Q 从原点 O 出发,沿 x 轴正方向匀速运动,速度为每秒1个单位长度.点 M 是直线 PQ 与抛物线的一个交点,当运动到 t 秒时, QM = 2 PM ,直接写出 t 的值.

来源:2017年湖北省武汉市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c 与坐标轴交点分别为 A ( - 1 , 0 ) B ( 3 , 0 ) C ( 0 , 2 ) ,作直线 BC

(1)求抛物线的解析式;

(2)点 P 为抛物线上第一象限内一动点,过点 P PD x 轴于点 D ,设点 P 的横坐标为 t ( 0 < t < 3 ) ,求 ΔABP 的面积 S t 的函数关系式;

(3)条件同(2),若 ΔODP ΔCOB 相似,求点 P 的坐标.

来源:2018年青海省中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

如图,二次函数 y = a x 2 + bx + 4 的图象与 x 轴交于点 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C ,抛物线的顶点为 D ,其对称轴与线段 BC 交于点 E ,垂直于 x 轴的动直线 l 分别交抛物线和线段 BC 于点 P 和点 F ,动直线 l 在抛物线的对称轴的右侧(不含对称轴)沿 x 轴正方向移动到 B 点.

(1)求出二次函数 y = a x 2 + bx + 4 BC 所在直线的表达式;

(2)在动直线 l 移动的过程中,试求使四边形 DEFP 为平行四边形的点 P 的坐标;

(3)连接 CP CD ,在动直线 l 移动的过程中,抛物线上是否存在点 P ,使得以点 P C F 为顶点的三角形与 ΔDCE 相似?如果存在,求出点 P 的坐标;如果不存在,请说明理由.

来源:2020年山东省聊城市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 OABC 的顶点 A C 分别在 x 轴, y 轴的正半轴上,且 OA = 4 OC = 3 ,若抛物线经过 O A 两点,且顶点在 BC 边上,对称轴交 BE 于点 F ,点 D E 的坐标分别为 ( 3 , 0 ) ( 0 , 1 )

(1)求抛物线的解析式;

(2)猜想 ΔEDB 的形状并加以证明;

(3)点 M 在对称轴右侧的抛物线上,点 N x 轴上,请问是否存在以点 A F M N 为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点 M 的坐标;若不存在,请说明理由.

来源:2017年青海省西宁市中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = 1 3 x 2 + bx + c 经过 ΔABC 的三个顶点,其中点 A ( 0 , 1 ) ,点 B ( - 9 , 10 ) AC / / x 轴,点 P 是直线 AC 下方抛物线上的动点.

(1)求抛物线的解析式;

(2)过点 P 且与 y 轴平行的直线 l 与直线 AB AC 分别交于点 E F ,当四边形 AECP 的面积最大时,求点 P 的坐标;

(3)当点 P 为抛物线的顶点时,在直线 AC 上是否存在点 Q ,使得以 C P Q 为顶点的三角形与 ΔABC 相似,若存在,求出点 Q 的坐标,若不存在,请说明理由.

来源:2016年山东省潍坊市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图1,已知平行四边形 ABCD 顶点 A 的坐标为 ( 2 , 6 ) ,点 B y 轴上,且 AD / / BC / / x 轴,过 B C D 三点的抛物线 y = a x 2 + bx + c ( a 0 ) 的顶点坐标为 ( 2 , 2 ) ,点 F ( m , 6 ) 是线段 AD 上一动点,直线 OF BC 于点 E

(1)求抛物线的表达式;

(2)设四边形 ABEF 的面积为 S ,请求出 S m 的函数关系式,并写出自变量 m 的取值范围;

(3)如图2,过点 F FM x 轴,垂足为 M ,交直线 AC P ,过点 P PN y 轴,垂足为 N ,连接 MN ,直线 AC 分别交 x 轴, y 轴于点 H G ,试求线段 MN 的最小值,并直接写出此时 m 的值.

来源:2016年山东省烟台市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 + bx + 3 x 轴于点 A ( - 1 , 0 ) 和点 B ( 3 , 0 )

(1)求该抛物线所对应的函数解析式;

(2)如图2,该抛物线与 y 轴交于点 C ,顶点为 F ,点 D ( 2 , 3 ) 在该抛物线上.

①求四边形 ACFD 的面积;

②点 P 是线段 AB 上的动点(点 P 不与点 A B 重合),过点 P PQ x 轴交该抛物线于点 Q ,连接 AQ DQ ,当 ΔAQD 是直角三角形时,求出所有满足条件的点 Q 的坐标.

来源:2018年海南省中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

若一次函数 y = - 3 x - 3 的图象与 x 轴, y 轴分别交于 A C 两点,点 B 的坐标为 ( 3 , 0 ) ,二次函数 y = a x 2 + bx + c 的图象过 A B C 三点,如图(1).

(1)求二次函数的表达式;

(2)如图(1),过点 C CD / / x 轴交抛物线于点 D ,点 E 在抛物线上 ( y 轴左侧),若 BC 恰好平分 DBE .求直线 BE 的表达式;

(3)如图(2),若点 P 在抛物线上(点 P y 轴右侧),连接 AP BC 于点 F ,连接 BP S ΔBFP = m S ΔBAF

①当 m = 1 2 时,求点 P 的坐标;

②求 m 的最大值.

来源:2020年山东省泰安市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c ,其中 2 a = b > 0 > c ,且 a + b + c = 0

(1) 直接写出关于 x 的一元二次方程 a x 2 + bx + c = 0 的一个根;

(2) 证明: 抛物线 y = a x 2 + bx + c 的顶点 A 在第三象限;

(3) 直线 y = x + m x y 轴分别相交于 B C 两点, 与抛物线 y = a x 2 + bx + c 相交于 A D 两点 . 设抛物线 y = a x 2 + bx + c 的对称轴与 x 轴相交于 E . 如果在对称轴左侧的抛物线上存在点 F ,使得 ΔADF ΔBOC 相似, 并且 S ΔADF = 1 2 S ΔADE ,求此时抛物线的表达式 .

来源:2017年湖北省宜昌市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图①,抛物线 y = - x 2 + ( a + 1 ) x - a x 轴交于 A B 两点(点 A 位于点 B 的左侧),与 y 轴交于点 C .已知 ΔABC 的面积是6.

(1)求 a 的值;

(2)求 ΔABC 外接圆圆心的坐标;

(3)如图②, P 是抛物线上一点, Q 为射线 CA 上一点,且 P Q 两点均在第三象限内, Q A 是位于直线 BP 同侧的不同两点,若点 P x 轴的距离为 d ΔQPB 的面积为 2 d ,且 PAQ = AQB ,求点 Q 的坐标.

来源:2019年江苏省苏州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质计算题