在直角坐标系 中, 、 ,将 经过旋转、平移变化后得到如图1所示的 .
(1)求经过 、 、 三点的抛物线的解析式;
(2)连接 ,点 是位于线段 上方的抛物线上一动点,若直线 将 的面积分成 两部分,求此时点 的坐标;
(3)现将 、 分别向下、向左以 的速度同时平移,求出在此运动过程中 与 重叠部分面积的最大值.
如图,在平面直角坐标系中,已知抛物线 与 轴交于 , 两点,与 轴交于点 .
(1)求抛物线的解析式;
(2)在抛物线上是否存在点 ,使得 是以点 为直角顶点的直角三角形?若存在,求出符合条件的点 的坐标;若不存在,请说明理由;
(3)点 为抛物线上的一动点,过点 作 垂直于 轴于点 ,交直线 于点 ,过点 作 轴的垂线,垂足为点 ,连接 ,当线段 的长度最短时,求出点 的坐标.
如图,抛物线 与直线 交于 、 两点,其中点 在 轴上,点 坐标为 ,点 为 轴左侧的抛物线上一动点,过点 作 轴于点 ,交 于点 .
(1)求抛物线的解析式;
(2)以 , , , 为顶点的平行四边形是否存在?如存在,求点 的坐标;若不存在,说明理由.
(3)当点 运动到直线 下方某一处时,过点 作 ,垂足为 ,连接 使 为等腰直角三角形,请直接写出此时点 的坐标.
如图,抛物线 的图象经过 和 且与直线 相交于点 .
(1)求抛物线的解析式;
(2)求直线 与抛物线 的对称轴的交点 的坐标;
(3)在 轴上是否存在点 ,使 的一边中线等于该边的一半?若存在,求出点 的坐标;若不存在请说明理由.
如图,已知抛物线 交 轴与 , 两点(点 在点 左侧),将直尺 与 轴负方向成 放置,边 经过抛物线上的点 ,与抛物线的另一交点为点 ,直尺被 轴截得的线段 ,且 的面积为6.
(1)求该抛物线的解析式;
(2)探究:在直线 上方的抛物线上是否存在一点 ,使得 的面积最大?若存在,请求出面积的最大值及此时点 的坐标;若不存在,请说明理由.
(3)将直尺以每秒2个单位的速度沿 轴向左平移,设平移的时间为 秒,平移后的直尺为 ,其中边 所在的直线与 轴交于点 ,与抛物线的其中一个交点为点 ,请直接写出当 为何值时,可使得以 、 、 、 为顶点的四边形是平行四边形.
如图,在平面直角坐标系 中,抛物线 与 轴交于 , 两点(点 在点 的左侧),与 轴交于点 ,顶点为 ,对称轴与 轴交于点 ,过点 的直线 交抛物线于 , 两点,点 在 轴的右侧.
(1)求 的值及点 , 的坐标;
(2)当直线 将四边形 分为面积比为 的两部分时,求直线 的函数表达式;
(3)当点 位于第二象限时,设 的中点为 ,点 在抛物线上,则以 为对角线的四边形 能否为菱形?若能,求出点 的坐标;若不能,请说明理由.
如图,在平面直角坐标系中,抛物线 与 轴交于点 、 (点 在点 的左侧),该抛物线的对称轴与直线 相交于点 ,与 轴相交于点 ,点 在直线 上(不与原点重合),连接 ,过点 作 交 轴于点 ,连接 .
(1)如图①所示,若抛物线顶点的纵坐标为 ,求抛物线的解析式;
(2)求 、 两点的坐标;
(3)如图②所示,小红在探究点 的位置发现:当点 与点 重合时, 的大小为定值,进而猜想:对于直线 上任意一点 (不与原点重合), 的大小为定值.请你判断该猜想是否正确,并说明理由.
如图,顶点为 的抛物线 分别与 轴相交于点 , (点 在点 的右侧),与 轴相交于点 .
(1)求抛物线的函数表达式;
(2)判断 是否为直角三角形,并说明理由.
(3)抛物线上是否存在点 (点 与点 不重合),使得以点 , , , 为顶点的四边形的面积与四边形 的面积相等?若存在,求出点 的坐标;若不存在,请说明理由.
已知二次函数
(1)当 时,求这个二次函数的顶点坐标;
(2)求证:关于x的一元二次方程
有两个不相等的实数根;
(3)如图,该二次函数与x轴交于A、B两点(A点在B点的左侧),与y轴交于C点,P是y轴负半轴上一点,且 ,直线AP交BC于点Q,求证: .
已知抛物线 的图象与y轴交于点 ,顶点为B.
(1)试确定a的值,并写出B点的坐标;
(2)若一次函数的图象经过A、B两点,试写出一次函数的解析式;
(3)试在x轴上求一点P,使得△PAB的周长取最小值;
(4)若将抛物线平移 个单位,所得新抛物线的顶点记作C,与原抛物线的交点记作D,问:点O、C、D能否在同一条直线上?若能,请求出m的值;若不能,请说明理由.
如图①,直线 交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).
(1)求抛物线F1所表示的二次函数的表达式;
(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和S△BOC,记 ,求S最大时点M的坐标及S的最大值;
(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.
已知抛物线 与x轴相交于A,B两点(点A在点B的左侧),点P是抛物线上一点,且 ,如图所示.
(1)求抛物线的解析式.
(2)设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动.
①当点M在曲线PB之间(含端点)移动时,是否存在点M使△APM的面积为 ?若存在,求点M的坐标;若不存在,请说明理由.
②当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标.
如图,抛物线 (a、b、c为常数, )经过点A(﹣1,0),B(5,﹣6),C(6,0).
(1)求抛物线的解析式;
(2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)若点Q为抛物线的对称轴上的一个动点,试指出△QAB为等腰三角形的点Q一共有几个?并请求出其中某一个点Q的坐标.
如图,已知抛物线 经过A(﹣3,0)、B(5,0)、C(0,5)三点,O为坐标原点.
(1)求此抛物线的解析式;
(2)若把抛物线 向下平移 个单位长度,再向右平移 个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,求n的取值范围;
(3)设点P在y轴上,且满足 ,求CP的长.
如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于 ,点A坐标为 ,点B是点A关于y轴的对称点,点C在x轴的正半轴上.
(1)求该抛物线的函数关系表达式.
(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.