抛物线 与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.
(1)如图1,若 .
①求该抛物线的解析式;
②若D是抛物线上一点,满足 ,求点D的坐标;
(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时, 是否为定值?若是,试求出该定值;若不是,请说明理由.
二次函数 的部分图象如图所示,图象过点(﹣1,0),对称轴为直线 ,下列结论:(1) (2) ;(3) (4)若点 、点 、点 在该函数图象上,则 ;(5)若方程 的两根为x1和x2,且 ,则 .其中正确的结论有( )
A.2个B.3个C.4个D.5个
已知关于x的二次函数y=ax2+bx+c的图象经过点 , ,且 ,对于以下结论:① ;② ;③对于自变量x的任意一个取值,都有 ;在 中存在一个实数x0,使得 ,中结论错误的是 (只填写序号).
若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为( )
A. B. C. D.
以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是( )
A. B. C. D.
抛物线y1=ax2+bx+c与直线y2=mx+n的图象如图所示,下列判断中:①abc<0;②a+b+c>0;③5a﹣c=0;④当 或x>6时,y1>y2,其中正确的个数有( )
A.1B.2C.3D.4
如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:
①abc>0;②9a+3b+c<0;③c>﹣1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为 其中正确的结论个数有( )
A.1个B.2个C.3个D.4个
如图,在平面直角坐标系中,已知抛物线 的顶点为M,与y轴相交于点N,先将抛物线C1沿x轴翻折,再向右平移p个单位长度后得到抛物线C2:直线 经过M,N两点.
(1)结合图象,直接写出不等式 的解集;
(2)若抛物线C2的顶点与点M关于原点对称,求p的值及抛物线C2的解析式;
(3)若直线l沿y轴向下平移q个单位长度后,与(2)中的抛物线C2存在公共点,求3﹣4q的最大值.
如图,在平面直角坐标系中,抛物线的顶点为 A(1,﹣4),且与 x轴交于 B、 C两点,点 B的坐标为(3,0).
(1)写出 C点的坐标,并求出抛物线的解析式;
(2)观察图象直接写出函数值为正数时,自变量的取值范围.
已知抛物线 y= a( x﹣1) 2+3( a≠0)与 y轴交于点 A(0,2),顶点为 B,且对称轴 l 1与 x轴交于点 M
(1)求 a的值,并写出点 B的坐标;
(2)有一个动点 P从原点 O出发,沿 x轴正方向以每秒2个单位的速度运动,设运动时间为 t秒,求 t为何值时 PA+ PB最短;
(3)将此抛物线向右平移所得新的抛物线与原抛物线交于点 C,且新抛物线的对称轴 l 2与 x轴交于点 N,过点 C作 DE∥ x轴,分别交 l 1, l 2于点 D、 E,若四边形 MDEN是正方形,求平移后抛物线的解析式.
如图是二次函数 y= ax 2+ bx+ c图象的一部分,图象过点 A(﹣3,0),对称轴为直线 x=﹣1,给出以下结论:
① abc<0
② b 2﹣4 ac>0
③4 b+ c<0
④若 B(﹣ , y 1)、 C(﹣ , y 2)为函数图象上的两点,则 y 1> y 2
⑤当﹣3≤ x≤1时, y≥0,
其中正确的结论是(填写代表正确结论的序号) .
点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是( )
A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3
如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;
(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.