如图,一个函数的图象由射线 、线段 、射线 组成,其中点 , , , ,则此函数
A.当 时, 随 的增大而增大B.当 时, 随 的增大而减小
C.当 时, 随 的增大而增大D.当 时, 随 的增大而减小
为积极响应市委、市政府提出的"绿色发展,赛过江南"的号召,市园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积 S(单位:平方米)与工作时间 t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为( )
A. |
25平方米 |
B. |
50平方米 |
C. |
75平方米 |
D. |
100平方米 |
随着时代的进步,人们对 (空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中 的值 随时间 的变化如图所示,设 表示0时到 时 的值的极差(即0时到 时 的最大值与最小值的差),则 与 的函数关系大致是
A.B.
C.D.
园林队在某公园进行绿化,中间休息了一段时间,已知绿化面积 S( m) 2与工作时间 t( h)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为( )
A. |
100m 2 |
B. |
50m 2 |
C. |
80m 2 |
D. |
40m 2 |
已知函数
(1)画出函数图象;
列表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
描点,连线得到函数图象:
(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由;
(3)设 , , , 是函数图象上的点,若 ,证明: .
甲车从地驶往地,同时乙车从地驶往地,两车相向而行,匀速行驶,甲车距地的距离与行驶时间之间的函数关系如图所示,乙车的速度是
(1)求甲车的速度;
(2)当甲乙两车相遇后,乙车速度变为,并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求的值.
小强的爸爸从家骑自行车去图书馆借书,途中遇到了从图书馆步行回家的小强,爸爸借完书后迅速回家,途中追上了小强,便用自行车载上小强一起回家,结果爸爸比自己单独骑车回家晚到1分钟,两人与家的距离 (千米)和爸爸从家出发后的时间 (分钟)之间的关系如图所示.
(1)图书馆离家有多少千米?
(2)爸爸和小强第一次相遇时,离家多少千米?
(3)爸爸载上小强后一起回家的速度是多少?
在同一条道路上,甲车从 地到 地,乙车从 地到 地,乙先出发,图中的折线段表示甲、乙两车之间的距离 (千米)与行驶时间 (小时)的函数关系的图象,下列说法错误的是
A.乙先出发的时间为0.5小时
B.甲的速度是80千米 小时
C.甲出发0.5小时后两车相遇
D.甲到 地比乙到 地早 小时
小明从家出发沿笔直的公路去图书馆,在图书馆阅读书报后按原路回到家.如图,反映了小明离家的距离 (单位: 与时间 (单位: 之间的对应关系.下列描述错误的是
A. |
小明家距图书馆 |
B. |
小明在图书馆阅读时间为 |
C. |
小明在图书馆阅读书报和往返总时间不足 |
D. |
小明去图书馆的速度比回家时的速度快 |
已知 , 两地相距 ,甲、乙两人沿同一条公路从 地出发到 地,甲骑自行车匀速行驶 到达,乙骑摩托车,比甲迟 出发,行至 处追上甲,停留半小时后继续以原速行驶.他们离开 地的路程 与甲行驶时间 的函数图象如图所示.当乙再次追上甲时距离 地
A. |
|
B. |
|
C. |
|
D. |
|
一对变量满足如图的函数关系.设计以下问题情境:
①小明从家骑车以600米 分的速度匀速骑了2.5分钟,在原地停留了2分钟,然后以1000米 分的速度匀速骑回家.设所用时间为 分钟,离家的距离为 千米;
②有一个容积为1.5升的开口空瓶,小张以0.6升 秒的速度匀速向这个空瓶注水,注满后停止,等2秒后,再以1升 秒的速度匀速倒空瓶中的水.设所用时间为 秒,瓶内水的体积为 升;
③在矩形 中, , ,点 从点 出发.沿 路线运动至点 停止.设点 的运动路程为 , 的面积为 .
其中,符合图中函数关系的情境个数为
A. |
3 |
B. |
2 |
C. |
1 |
D. |
0 |
甲、乙两地相距 ,一辆汽车上午 从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了 ,并继续匀速行驶至乙地,汽车行驶的路程 与时间 之间的函数关系如图所示,该车到达乙地的时间是当天上午
A. B. C. D.
“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是
A.
B.
C.
D.