周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的 继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚 分钟到达B地.
星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了 后回家,图中的折线段 是她出发后所在位置离家的距离 与行走时间 之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是
A.B.
C.D.
规定: 表示不大于 的最大整数, 表示不小于 的最小整数, 表示最接近 的整数 , 为整数),例如: , , .则下列说法正确的是 .(写出所有正确说法的序号)
①当 时, ;
②当 时, ;
③方程 的解为 ;
④当 时,函数 的图象与正比例函数 的图象有两个交点.
下列图象中,能反映等腰三角形顶角 (度 与底角 (度 之间的函数关系的是
A.B.
C.D.
函数图象是研究函数的重要工具。探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程。请结合已有的学习经验,画出函数 的图象,并探究其性质.
列表如下:
|
|
|
|
|
|
0 |
1 |
2 |
3 |
4 |
|
|
|
|
|
|
|
0 |
|
|
|
|
|
(1)写出表中 、 的值,并在平面直角坐标系中画出该函数的图象;
(2)观察函数 的图象,判断下列关于该函数性质的命题:
①当 时,函数图象关于直线 对称;
② 时,函数有最小值,最小值为 ;
③ 时,函数 的值随 的增大而减小.
其中正确的是 .(请写出所有正确命题的番号)
(3)结合图象,请写出不等式 的解集 .
某学校组织团员举行“伏羲文化旅游节”宣传活动,从学校骑自行车出发,先上坡到达甲地后,宣传了8分钟,然后下坡到乙地又宣传了8分钟返回,行程情况如图所示.若返回时,上、下坡速度保持不变,在甲地仍要宣传8分钟,那么他们从乙地返回学校所用的时间是
A.33分钟B.46分钟C.48分钟D.45.2分钟
小明从家到图书馆看报然后返回,他离家的距离 与离家的时间 之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为 .
如图,匀速地向该容器内注水,最后把容器注满,在注水过程中容器内液面的高度h随时间t变化的函数图象最接近实际情况的是( )
A.B.
C.D.
将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯内水面的高度 与注水时间 的函数图象大致为图中的
A.B.
C.D.
甲、乙两车从 地出发,匀速驶向 地.甲车以 的速度行驶 后,乙车才沿相同路线行驶.乙车先到达 地并停留 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离 与乙车行驶时间 之间的函数关系如图所示.下列说法:①乙车的速度是 ;② ;③点 的坐标是 ;④ .其中说法正确的有
A.4个B.3个C.2个D.1个
小明从家出发沿笔直的公路去图书馆,在图书馆阅读书报后按原路回到家.如图,反映了小明离家的距离 (单位: 与时间 (单位: 之间的对应关系.下列描述错误的是
A. |
小明家距图书馆 |
B. |
小明在图书馆阅读时间为 |
C. |
小明在图书馆阅读书报和往返总时间不足 |
D. |
小明去图书馆的速度比回家时的速度快 |
已知 , 两地相距 ,甲、乙两人沿同一条公路从 地出发到 地,甲骑自行车匀速行驶 到达,乙骑摩托车,比甲迟 出发,行至 处追上甲,停留半小时后继续以原速行驶.他们离开 地的路程 与甲行驶时间 的函数图象如图所示.当乙再次追上甲时距离 地
A. |
|
B. |
|
C. |
|
D. |
|
一对变量满足如图的函数关系.设计以下问题情境:
①小明从家骑车以600米 分的速度匀速骑了2.5分钟,在原地停留了2分钟,然后以1000米 分的速度匀速骑回家.设所用时间为 分钟,离家的距离为 千米;
②有一个容积为1.5升的开口空瓶,小张以0.6升 秒的速度匀速向这个空瓶注水,注满后停止,等2秒后,再以1升 秒的速度匀速倒空瓶中的水.设所用时间为 秒,瓶内水的体积为 升;
③在矩形 中, , ,点 从点 出发.沿 路线运动至点 停止.设点 的运动路程为 , 的面积为 .
其中,符合图中函数关系的情境个数为
A. |
3 |
B. |
2 |
C. |
1 |
D. |
0 |
甲、乙两地相距 ,一辆汽车上午 从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了 ,并继续匀速行驶至乙地,汽车行驶的路程 与时间 之间的函数关系如图所示,该车到达乙地的时间是当天上午
A. B. C. D.