在平面直角坐标系中,一个智能机器人接到如下指令:从原点 O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1 m.其行走路线如图所示,第1次移动到 A 1,第2次移动到 A 2,…,第 n次移动到 A n.则△ OA 2 A 2018的面积是( )
A. |
504m 2 |
B. |
m 2 |
C. |
m 2 |
D. |
1009m 2 |
已知正方形的对称中心在坐标原点,顶点 A、 B、 C、 D按逆时针依次排列,若 A点的坐标为(2, ),则 B点与 D点的坐标分别为( )
A. |
(﹣2, ),(2,﹣ ) |
B. |
(﹣ ,2),( ,﹣2) |
C. |
(﹣ ,2),(2,﹣ ) |
D. |
(- , )( , ) |
如图,在平面直角坐标系中,已知 A(﹣1,0), B(0,2),将△ ABO沿直线 AB翻折后得到△ ABC,若反比例函数 y= ( x<0)的图象经过点 C,则 k= .
如图,在平面直角坐标系中,以 O为圆心,适当长为半径画弧,交 x轴于点 M,交 y轴于点 N,再分别以点 M, N为圆心,大于 MN的长为半径画弧,两弧在第二象限交于点 P,若点 P的坐标为(3 a, b+1),则 a与 b的数量关系为( )
A. |
3a=2b |
B. |
3a=b+1 |
C. |
3a+b﹣1=0 |
D. |
3a=﹣b﹣1 |
下列运算及判断正确的是( )
A. |
﹣5× ÷(﹣ )×5=1 |
B. |
方程(x 2+x﹣1) x +3=1有四个整数解 |
C. |
若a×567 3=10 3,a÷10 3=b,则a×b= |
D. |
有序数对(m 2+1,|m|)在平面直角坐标系中对应的点一定在第一象限 |
在平面直角坐标系中,对于点 P( a, b),我们把 Q(﹣ b+1, a+1)叫做点 P的伴随点,已知 A 1的伴随点为 A 2, A 2的伴随点为 A 3,…,这样依次下去得到 A 1, A 2, A 3,…, A n,若 A 1的坐标为(3,1),则 A 2018的坐标为 .
平面直角坐标系中,已知 .若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )
A.5B.6C.7D.8
在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
如图,在矩形OABC纸片中,OA=7,OC=5,D为BC边上动点,将△OCD沿OD折叠,当点C的对应点落在直线l:y=﹣x+7上时,记为点E,F,当点C的对应点落在边OA上时,记为点G.
(1)求点E,F的坐标;
(2)求经过E,F,G三点的抛物线的解析式;
(3)当点C的对应点落在直线l上时,求CD的长;
(4)在(2)中的抛物线上是否存在点P,使以E,F,P为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
如图,直线l: ,点A1坐标为(﹣3,0).过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2016的坐标为 .
如图,在平面直角坐标系中, …,都是等边三角形,且点A1,A3,A5,A7,A9的坐标分别为 ,依据图形所反映的规律,则A100的坐标为 .
如图,以正六边形 ABCDEF的中心为坐标原点建立平面直角坐标系,顶点 C、 F在 x轴上,顶点 A的坐标为(1, ),则顶点 D的坐标为 .
已知平行四边形 ABCD的顶点 A在第三象限,对角线 AC的中点在坐标原点,一边 AB与 x轴平行且 AB=2,若点 A的坐标为( a, b),则点 D的坐标为 .