如图,△ ,△ ,△ , ,△ 都是斜边在 轴上的等腰直角三角形,点 , , , , 都在 轴上,点 , , , , 都在反比例函数 的图象上,则点 的坐标为 .(用含有正整数 的式子表示)
特例感知
(1)如图1,对于抛物线,,,下列结论正确的序号是 ;
①抛物线,,都经过点;
②抛物线,的对称轴由抛物线的对称轴依次向左平移个单位得到;
③抛物线,,与直线的交点中,相邻两点之间的距离相等.
形成概念
(2)把满足为正整数)的抛物线称为“系列平移抛物线”.
知识应用
在(2)中,如图2.
①“系列平移抛物线”的顶点依次为,,,,,用含的代数式表示顶点的坐标,并写出该顶点纵坐标与横坐标之间的关系式;
②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:,,,,,其横坐标分别为,,,,为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.
③在②中,直线分别交“系列平移抛物线”于点,,,,,连接,,判断,是否平行?并说明理由.
在平面直角坐标系 中,点 的坐标为 , ,点 的坐标为 , ,且 , ,若 , 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点 , 的"相关矩形",如图为点 , 的"相关矩形"示意图.
(1)已知点 的坐标为 ,
①若点 的坐标为 ,求点 , 的"相关矩形"的面积;
②点 在直线 上,若点 , 的"相关矩形"为正方形,求直线 的表达式;
(2) 的半径为 ,点 的坐标为 ,若在 上存在一点 ,使得点 , 的"相关矩形"为正方形,求 的取值范围.
在平面直角坐标系中,的半径为1,,为外两点,.
给出如下定义:平移线段,得到的弦,分别为点,的对应点),线段长度的最小值称为线段到的“平移距离”.
(1)如图,平移线段得到的长度为1的弦和,则这两条弦的位置关系是 ;在点,,,中,连接点与点 的线段的长度等于线段到的“平移距离”;
(2)若点,都在直线上,记线段到的“平移距离”为,求的最小值;
(3)若点的坐标为,记线段到的“平移距离”为,直接写出的取值范围.
阅读理解:在平面直角坐标系中,若两点 、 的坐标分别是 , 、
, ,则 、 这两点间的距离为 .如 , ,则 .
对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.
解决问题:如图,已知在平面直角坐标系 中,直线 交 轴于点 ,点 关于 轴的对称点为点 ,过点 作直线 平行于 轴.
(1)到点 的距离等于线段 长度的点的轨迹是 ;
(2)若动点 满足到直线 的距离等于线段 的长度,求动点 轨迹的函数表达式;
问题拓展:(3)若(2)中的动点 的轨迹与直线 交于 、 两点,分别过 、 作直线 的垂线,垂足分别是 、 ,求证:
① 是 外接圆的切线;
② 为定值.
如图,在直角坐标系 中,菱形 的边 在 轴正半轴上,点 , 在第一象限, ,边长 .点 从原点 出发沿 轴正半轴以每秒1个单位长的速度作匀速运动,点 从 出发沿边 以每秒2个单位长的速度作匀速运动,过点 作直线 垂直于 轴并交折线 于 ,交对角线 于 ,点 和点 同时出发,分别沿各自路线运动,点 运动到原点 时, 和 两点同时停止运动.
(1)当 时,求线段 的长;
(2)求 为何值时,点 与 重合;
(3)设 的面积为 ,求 与 的函数关系式及 的取值范围.
如图, 在平面直角坐标系中, 把矩形 沿对角线 所在直线折叠, 点 落在点 处, 与 轴相交于点 ,矩形 的边 , 的长是关于 的一元二次方程 的两个根, 且 .
(1) 求线段 , 的长;
(2) 求证: ,并求出线段 的长;
(3) 直接写出点 的坐标;
(4) 若 是直线 上一个动点, 在坐标平面内是否存在点 ,使以点 , , , 为顶点的四边形是菱形?若存在, 请直接写出 点的坐标;若不存在, 请说明理由 .
如图1,已知矩形 , , ,动点 从点 出发,以 的速度向点 运动,直到点 为止;动点 同时从点 出发,以 的速度向点 运动,与点 同时结束运动.
(1)点 到达终点 的运动时间是 ,此时点 的运动距离是 ;
(2)当运动时间为 时, 、 两点的距离为 ;
(3)请你计算出发多久时,点 和点 之间的距离是 ;
(4)如图2,以点 为坐标原点, 所在直线为 轴, 所在直线为 轴, 长为单位长度建立平面直角坐标系,连接 ,与 相交于点 ,若双曲线 过点 ,问 的值是否会变化?若会变化,说明理由;若不会变化,请求出 的值.
已知:如图所示,在平面直角坐标系 中, , , ,若点 是边 上的一个动点(与点 、 不重合),过点 作 交 于点 .
(1)求点 的坐标;
(2)当 的周长与四边形 的周长相等时,求 的长;
(3)在 上是否存在点 ,使得 为等腰直角三角形?若存在,请求出此时 的长;若不存在,请说明理由.
在平面直角坐标系 中,对于 、 两点,若在 轴上存在点 ,使得 ,且 ,则称 、 两点互相关联,把其中一个点叫做另一个点的关联点.已知点 、 ,点 在一次函数 的图象上.
(1)①如图,在点 、 、 中,点 的关联点是 (填" "、" "或" " ;
②若在线段 上存在点 的关联点 ,则点 的坐标是 ;
(2)若在线段 上存在点 的关联点 ,求实数 的取值范围;
(3)分别以点 、 为圆心,1为半径作 、 .若对 上的任意一点 ,在 上总存在点 ,使得 、 两点互相关联,请写出点 的坐标.
定义:若实数 , 满足 , ,且 , 为常数,则称点 为“线点”.例如,点 和 是“线点”.已知:在直角坐标系 中,点 .
(1) 和 两点中,点 是“线点”;
(2)若点 是“线点”,用含 的代数式表示 ,并求 的取值范围;
(3)若点 是“线点”,直线 分别交 轴、 轴于点 , ,当 时,直接写出 的值.
已知平面图形 ,点 、 是 上任意两点,我们把线段 的长度的最大值称为平面图形 的“宽距”.例如,正方形的宽距等于它的对角线的长度.
(1)写出下列图形的宽距:
①半径为1的圆: ;
②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“: ;
(2)如图2,在平面直角坐标系中,已知点 、 , 是坐标平面内的点,连接 、 、 所形成的图形为 ,记 的宽距为 .
①若 ,用直尺和圆规画出点 所在的区域并求它的面积(所在区域用阴影表示);
②若点 在 上运动, 的半径为1,圆心 在过点 且与 轴垂直的直线上.对于 上任意点 ,都有 ,直接写出圆心 的横坐标 的取值范围.
如图,菱形 的四个顶点均在坐标轴上,对角线 、 交于原点 , 于 点,交 于 点,反比例函数 的图象经过线段 的中点 ,若 ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在平面直角坐标系中,菱形 的边 在 轴上,点 坐标 ,点 在 轴正半轴上,且 ,点 从原点 出发,以每秒一个单位长度的速度沿 轴正方向移动,移动时间为 秒,过点 作平行于 轴的直线 ,直线 扫过四边形 的面积为 .
(1)求点 坐标.
(2)求 关于 的函数关系式.
(3)在直线 移动过程中, 上是否存在一点 ,使以 、 、 为顶点的三角形是等腰直角三角形?若存在,直接写出 点的坐标;若不存在,请说明理由.