初中数学

如图,一直线与两坐标轴的正半轴分别交于 A B 两点, P 是线段 AB 上任意一点(不包括端点),过 P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是 (    )

A. y = x + 5 B. y = x + 10 C. y = x + 5 D. y = x + 10

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, B ( 3 , 3 ) C ( 5 , 0 ) ,以 OC CB 为边作平行四边形 OABC ,则经过点 A 的反比例函数的解析式为  

来源:2018年山东省东营市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,点 Pxy)经过某种变换后得到点 P'(﹣ y+1, x+2),我们把点 P'(﹣ y+1, x+2)叫做点 Pxy)的终结点.已知点 P 1的终结点为 P 2,点 P 2的终结点为 P 3,点 P 3的终结点为 P 4,这样依次得到 P 1P 2P 3P 4、… P n、…,若点 P 1的坐标为(2,0),则点 P 2017的坐标为   

来源:2017年内蒙古赤峰市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图1,在直角坐标系 xoy 中,直线 l : y = kx + b x 轴, y 轴于点 E F ,点 B 的坐标是 ( 2 , 2 ) ,过点 B 分别作 x 轴、 y 轴的垂线,垂足为 A C ,点 D 是线段 CO 上的动点,以 BD 为对称轴,作与 ΔBCD 成轴对称的△ BC ' D

(1)当 CBD = 15 ° 时,求点 C ' 的坐标.

(2)当图1中的直线 l 经过点 A ,且 k = 3 3 时(如图 2 ) ,求点 D C O 的运动过程中,线段 BC ' 扫过的图形与 ΔOAF 重叠部分的面积.

(3)当图1中的直线 l 经过点 D C ' 时(如图 3 ) ,以 DE 为对称轴,作与 ΔDOE 成轴对称的△ DO ' E ,连接 O ' C O ' O ,问是否存在点 D ,使得△ DO ' E 与△ CO ' O 相似?若存在,求出 k b 的值;若不存在,请说明理由.

来源:2016年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, O 为坐标原点,点 A 的坐标为 ( 5 , 0 ) ,菱形 OABC 的顶点 B C 都在第一象限, tan AOC = 4 3 ,将菱形绕点 A 按顺时针方向旋转角 α ( 0 ° < α < AOC ) 得到菱形 FADE (点 O 的对应点为点 F ) EF OC 交于点 G ,连接 AG

(1)求点 B 的坐标.

(2)当 OG = 4 时,求 AG 的长.

(3)求证: GA 平分 OGE

(4)连接 BD 并延长交 x 轴于点 P ,当点 P 的坐标为 ( 12 , 0 ) 时,求点 G 的坐标.

来源:2016年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

定义:点 P ΔABC 内部或边上的点(顶点除外),在 ΔPAB ΔPBC ΔPCA 中,若至少有一个三角形与 ΔABC 相似,则称点 P ΔABC 的自相似点.

例如:如图1,点 P ΔABC 的内部, PBC = A BCP = ABC ,则 ΔBCP ΔABC ,故点 P ΔABC 的自相似点.

请你运用所学知识,结合上述材料,解决下列问题:

在平面直角坐标系中,点 M 是曲线 y = 3 3 x ( x > 0 ) 上的任意一点,点 N x 轴正半轴上的任意一点.

(1)如图2,点 P OM 上一点, ONP = M ,试说明点 P ΔMON 的自相似点;当点 M 的坐标是 ( 3 3 ) ,点 N 的坐标是 ( 3 0 ) 时,求点 P 的坐标;

(2)如图3,当点 M 的坐标是 ( 3 , 3 ) ,点 N 的坐标是 ( 2 , 0 ) 时,求 ΔMON 的自相似点的坐标;

(3)是否存在点 M 和点 N ,使 ΔMON 无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.

来源:2017年山东省济宁市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,点 O 为原点,点 A 的坐标为 ( 6 , 0 ) .如图1,正方形 OBCD 的顶点 B x 轴的负半轴上,点 C 在第二象限.现将正方形 OBCD 绕点 O 顺时针旋转角 α 得到正方形 OEFG

(1)如图2,若 α = 60 ° OE = OA ,求直线 EF 的函数表达式.

(2)若 α 为锐角, tan α = 1 2 ,当 AE 取得最小值时,求正方形 OEFG 的面积.

(3)当正方形 OEFG 的顶点 F 落在 y 轴上时,直线 AE 与直线 FG 相交于点 P ΔOEP 的其中两边之比能否为 2 : 1 ?若能,求点 P 的坐标;若不能,试说明理由

来源:2016年浙江省金华市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,矩形 OABC 的顶点 O 在坐标原点,顶点 A C 分别在 x 轴, y 轴上, B D 两点坐标分别为 B ( 4 , 6 ) D ( 0 , 4 ) ,线段 EF 在边 OA 上移动,保持 EF = 3 ,当四边形 BDEF 的周长最小时,点 E 的坐标为   

来源:2021年山东省聊城市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,点 O 为坐标原点,点 B 的坐标为 ( 4 , 3 ) ,点 A C 在坐标轴上,点 P BC 边上,直线 l 1 : y = 2 x + 3 ,直线 l 2 : y = 2 x 3

(1)分别求直线 l 1 x 轴,直线 l 2 AB 的交点坐标;

(2)已知点 M 在第一象限,且是直线 l 2 上的点,若 ΔAPM 是等腰直角三角形,求点 M 的坐标;

(3)我们把直线 l 1 和直线 l 2 上的点所组成的图形为图形 F .已知矩形 ANPQ 的顶点 N 在图形 F 上, Q 是坐标平面内的点,且 N 点的横坐标为 x ,请直接写出 x 的取值范围(不用说明理由).

来源:2016年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图1,平面直角坐标系 xOy 中,等腰 ΔABC 的底边 BC x 轴上, BC = 8 ,顶点 A y 的正半轴上, OA = 2 ,一动点 E ( 3 , 0 ) 出发,以每秒1个单位的速度沿 CB 向左运动,到达 OB 的中点停止.另一动点 F 从点 C 出发,以相同的速度沿 CB 向左运动,到达点 O 停止.已知点 E F 同时出发,以 EF 为边作正方形 EFGH ,使正方形 EFGH ΔABC BC 的同侧,设运动的时间为 t ( t 0 )

(1)当点 H 落在 AC 边上时,求 t 的值;

(2)设正方形 EFGH ΔABC 重叠面积为 S ,请问是否存在 t 值,使得 S = 91 36 ?若存在,求出 t 值;若不存在,请说明理由;

(3)如图2,取 AC 的中点 D ,连结 OD ,当点 E F 开始运动时,点 M 从点 O 出发,以每秒 2 5 个单位的速度沿 OD - DC - CD - DO 运动,到达点 O 停止运动.请问在点 E 的整个运动过程中,点 M 可能在正方形 EFGH 内(含边界)吗?如果可能,求出点 M 在正方形 EFGH 内(含边界)的时长;若不可能,请说明理由.

来源:2020年湖南省衡阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图所示,拋物线轴交于两点,与轴交于点,且点的坐标为,点的坐标为,对称轴为直线.点是抛物线上一个动点,设点的横坐标为,连接

(1)求抛物线的函数表达式;

(2)当的面积等于的面积的时,求的值;

(3)在(2)的条件下,若点轴上一动点,点是抛物线上一动点,试判断是否存在这样的点,使得以点为顶点的四边形是平行四边形.若存在,请直接写出点的坐标;若不存在,请说明理由.

来源:2020年甘肃省天水市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,一次函数 y = x 与反比例函数 y = 1 x ( x > 0 ) 的图象交于点 A ,过点 A AB OA ,交 x 轴于点 B ;作 B A 1 / / OA ,交反比例函数图象于点 A 1 ;过点 A 1 A 1 B 1 A 1 B x 轴于点 B ;再作 B 1 A 2 / / B A 1 ,交反比例函数图象于点 A 2 ,依次进行下去, ,则点 A 2021 的横坐标为   

来源:2021年山东省菏泽市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,正方形的四个顶点坐标分别为

(1)填空:正方形的面积为  ;当双曲线与正方形有四个交点时,的取值范围是:  

(2)已知抛物线顶点在边上,与边分别相交于点,过点的双曲线与边交于点

①点是平面内一动点,在抛物线的运动过程中,点运动,分别求运动过程中点在最高位置和最低位置时的坐标;

②当点在点下方,,点不与两点重合时,求的值;

③求证:抛物线与直线的交点始终位于轴下方.

来源:2019年湖北省宜昌市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形的边.若不改变矩形的形状和大小,当矩形顶点轴的正半轴上左右移动时,矩形的另一个顶点始终在轴的正半轴上随之上下移动.

(1)当时,求点的坐标;

(2)设的中点为,连接,当四边形的面积为时,求的长;

(3)当点移动到某一位置时,点到点的距离有最大值,请直接写出最大值,并求此时的值.

来源:2019年湖南省益阳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, AB y 轴,垂足为 B,将△ ABO绕点 A逆时针旋转到△ AB 1 O 1的位置,使点 B的对应点 B 1落在直线 y = - 3 4 x上,再将△ AB 1 O 1绕点 B 1逆时针旋转到△ A 1 B 1 O 2的位置,使点 O 1的对应点 O 2也落在直线 y = - 3 4 x上,以此进行下去…若点 B的坐标为(0,3),则点 B 21的纵坐标为   

来源:2021年四川省广安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

初中数学平面直角坐标系试题