初中数学

定义:若实数 x y 满足 x 2 = 2 y + t y 2 = 2 x + t ,且 x y t 为常数,则称点 M ( x , y ) 为“线点”.例如,点 ( 0 , - 2 ) ( - 2 , 0 ) 是“线点”.已知:在直角坐标系 xOy 中,点 P ( m , n )

(1) P 1 ( 3 , 1 ) P 2 ( - 3 , 1 ) 两点中,点     是“线点”;

(2)若点 P 是“线点”,用含 t 的代数式表示 mn ,并求 t 的取值范围;

(3)若点 Q ( n , m ) 是“线点”,直线 PQ 分别交 x 轴、 y 轴于点 A B ,当 | POQ - AOB | = 30 ° 时,直接写出 t 的值.

来源:2019年江苏省南通市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点 A 的坐标可表示为 ( 1 ,2, 5 ) ,点 B 的坐标可表示为 ( 4 ,1, 3 ) ,按此方法,则点 C 的坐标可表示为               

来源:2019年江苏省连云港市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知平面图形 S ,点 P Q S 上任意两点,我们把线段 PQ 的长度的最大值称为平面图形 S 的“宽距”.例如,正方形的宽距等于它的对角线的长度.

(1)写出下列图形的宽距:

①半径为1的圆:       

②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:     

(2)如图2,在平面直角坐标系中,已知点 A ( - 1 , 0 ) B ( 1 , 0 ) C 是坐标平面内的点,连接 AB BC CA 所形成的图形为 S ,记 S 的宽距为 d

①若 d = 2 ,用直尺和圆规画出点 C 所在的区域并求它的面积(所在区域用阴影表示);

②若点 C M 上运动, M 的半径为1,圆心 M 在过点 ( 0 , 2 ) 且与 y 轴垂直的直线上.对于 M 上任意点 C ,都有 5 d 8 ,直接写出圆心 M 的横坐标 x 的取值范围.

来源:2019年江苏省常州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

平面直角坐标系中,点 P ( - 3 , 4 ) 到原点的距离是      

来源:2019年江苏省常州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

( - 1 , 2 ) 所在的象限是第      象限.

来源:2018年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

对于任意实数 m ,点 P ( m - 2 , 9 - 3 m ) 不可能在 (    )

A.第一象限B.第二象限C.第三象限D.第四象限

来源:2016年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

正方形 A 1 B 1 C 1 O A 2 B 2 C 2 C 1 A 3 B 3 C 3 C 2 按如图所示放置,点 A 1 A 2 A 3 在直线 y = x + 1 上,点 C 1 C 2 C 3 x 轴上,则 A n 的坐标是  

来源:2017年四川省广安市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,一动点从原点 O 出发,沿着箭头所示方向,每次移动1个单位,依次得到点 P 1 ( 0 , 1 ) P 2 ( 1 , 1 ) P 3 ( 1 , 0 ) P 4 ( 1 , 1 ) P 5 ( 2 , 1 ) P 6 ( 2 , 0 ) ,则点 P 2017 的坐标是  

来源:2017年四川省甘孜州中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点 P 1 ( x 1 y 1 ) P 2 ( x 2 y 2 ) ,可通过构造直角三角形利用图1得到结论: P 1 P 2 = ( x 2 x 1 ) 2 + ( y 2 y 1 ) 2 他还利用图2证明了线段 P 1 P 2 的中点 P ( x , y ) P 的坐标公式: x = x 1 + x 2 2 y = y 1 + y 2 2

(1)请你帮小明写出中点坐标公式的证明过程;

运用:(2)①已知点 M ( 2 , 1 ) N ( 3 , 5 ) ,则线段 MN 长度为  

②直接写出以点 A ( 2 , 2 ) B ( 2 , 0 ) C ( 3 , 1 ) D 为顶点的平行四边形顶点 D 的坐标:  

拓展:(3)如图3,点 P ( 2 , n ) 在函数 y = 4 3 x ( x 0 ) 的图象 OL x 轴正半轴夹角的平分线上,请在 OL x 轴上分别找出点 E F ,使 ΔPEF 的周长最小,简要叙述作图方法,并求出周长的最小值.

来源:2017年四川省达州市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,对于不在坐标轴上的任意一点 P ( x , y ) ,我们把点 P ' ( 1 x 1 y ) 称为点 P 的“倒影点”,直线 y = x + 1 上有两点 A B ,它们的倒影点 A ' B ' 均在反比例函数 y = k x 的图象上.若 AB = 2 2 ,则 k =   

来源:2017年四川省成都市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,菱形 ABCD 的边 AB x 轴上,点 B 坐标 ( 3 , 0 ) ,点 C y 轴正半轴上,且 sin CBO = 4 5 ,点 P 从原点 O 出发,以每秒一个单位长度的速度沿 x 轴正方向移动,移动时间为 t ( 0 t 5 ) 秒,过点 P 作平行于 y 轴的直线 l ,直线 l 扫过四边形 OCDA 的面积为 S

(1)求点 D 坐标.

(2)求 S 关于 t 的函数关系式.

(3)在直线 l 移动过程中, l 上是否存在一点 Q ,使以 B C Q 为顶点的三角形是等腰直角三角形?若存在,直接写出 Q 点的坐标;若不存在,请说明理由.

来源:2018年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

菱形 ABCD 在平面直角坐标系中的位置如图所示,对角线 AC BD 的交点 E 恰好在 y 轴上,过点 D BC 的中点 H 的直线交 AC 于点 F ,线段 DE CD 的长是方程 x 2 9 x + 18 = 0 的两根,请解答下列问题:

(1)求点 D 的坐标;

(2)若反比例函数 y = k x ( k 0 ) 的图象经过点 H ,则 k =   

(3)点 Q 在直线 BD 上,在直线 DH 上是否存在点 P ,使以点 F C P Q 为顶点的四边形是平行四边形?若存在,请直接写出点 P 的坐标;若不存在,请说明理由.

来源:2018年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

已知:在平面直角坐标系中,点 O 为坐标原点,点 A x 轴的负半轴上,直线 y = 3 x + 7 2 3 x 轴、 y 轴分别交于 B C 两点,四边形 ABCD 为菱形.

(1)如图1,求点 A 的坐标;

(2)如图2,连接 AC ,点 P ΔACD 内一点,连接 AP BP BP AC 交于点 G ,且 APB = 60 ° ,点 E 在线段 AP 上,点 F 在线段 BP 上,且 BF = AE ,连接 AF EF ,若 AFE = 30 ° ,求 A F 2 + E F 2 的值;

(3)如图3,在(2)的条件下,当 PE = AE 时,求点 P 的坐标.

来源:2018年黑龙江省哈尔滨市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,点 A ( 3 1 ) 在射线 OM 上,点 B ( 3 3 ) 在射线 ON 上,以 AB 为直角边作 Rt Δ ABA 1 ,以 B A 1 为直角边作第二个 Rt B A 1 B 1 ,以 A 1 B 1 为直角边作第三个 Rt A 1 B 1 A 2 ,依此规律,得到 Rt B 2017 A 2018 B 2018 ,则点 B 2018 的纵坐标为  

来源:2018年黑龙江省大兴安岭中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,半径为3的 A 经过原点 O 和点 C ( 0 , 2 ) B y 轴左侧 A 优弧上一点,则 tan OBC (    )

A. 1 3 B. 2 2 C. 2 2 3 D. 2 4

来源:2019年贵州省安顺市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

初中数学平面直角坐标系试题