如图,点 的坐标为 , 在 轴的正半轴上,且 ,过点 作 ,垂足为 ,交 轴于点 ;过点 作 ,垂足为 ,交 轴于点 ;过点 作 ,垂足为 ,交 轴于点 ;过点 作 ,垂足为 ,交 轴于点 ; 按此规律进行下去,则点 的纵坐标为 .
如图,在平面直角坐标系中,正方形 的顶点 与坐标原点重合,点 的坐标为 ,点 在 轴的负半轴上,点 、 分别在边 、 上,且 , ,一次函数 的图象过点 和 ,反比例函数 的图象经过点 ,与 的交点为 .
(1)求反比例函数和一次函数的表达式;
(2)若点 在直线 上,且使 的面积与四边形 的面积相等,求点 的坐标.
如图,在平面直角坐标系中,直线 交 轴于点 ,交 轴于点 ,点 , , 在直线 上,点 , , , 在 轴的正半轴上,若△ ,△ ,△ , ,依次均为等腰直角三角形,直角顶点都在 轴上,则第 个等腰直角三角形 顶点 的横坐标为 .
如图,在平面直角坐标系中,边长为1的正方形 的两边在坐标轴上,以它的对角线 为边作正方形 ,再以正方形 的对角线 为边作正方形 ,以此类推 、则正方形 的顶点 的坐标是 .
已知点 , 和直线 ,则点 到直线 的距离证明可用公式 计算.
例如:求点 到直线 的距离.
解:因为直线 ,其中 , .
所以点 到直线 的距离为: .
根据以上材料,解答下列问题:
(1)求点 到直线 的距离;
(2)已知 的圆心 坐标为 ,半径 为2,判断 与直线 的位置关系并说明理由;
(3)已知直线 与 平行,求这两条直线之间的距离.
如图,在平面直角坐标系中,函数 和 的图象分别为直线 , ,过点 作 轴的垂线交 于点 ,过点 作 轴的垂线交 于点 ,过点 作 轴的垂线交 于点 ,过点 作 轴的垂线交 于点 , 依次进行下去,则点 的坐标为 .
如图,已知点 、 在反比例函数 的图象上,点 , 在反比例函数 的图象上, , 轴, , 在 轴的两侧, , , 与 间的距离为6,则 的值是 .
如图, △ 在平面直角坐标系内, , ,以 为直角边向外作 △ ,使 , ,以 为直角边向外作 △ ,使 , ,按此方法进行下去,得到 △ , △ , , △ ,若点 ,则点 的横坐标为 .
如图,直线 上有点 , , , ,且 , , , ,分别过点 , , , 作直线 的垂线,交 轴于点 , , , ,依次连接 , , , ,得到△ ,△ ,△ , ,△ ,则△ 的面积为 .(用含正整数 的式子表示)
如图,点 ,点 ,连接 ,点 , 分别是 , 的中点,在射线 上有一动点 ,若 是直角三角形,则点 的坐标是 .
如图,已知菱形 的边 在 轴上,点 的坐标为 ,点 是对角线 上的一个动点,点 在 轴上,当 最短时,点 的坐标为 .
如图,在平面直角坐标系中,正方形 和正方形 的顶点 , 在 轴上,顶点 , 在 轴上,且 ,反比例函数 的图象经过点 ,则 .
如图,在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 ,过点 作 轴的垂线交直线 于点 ,过点 作 的垂线交 轴于点 ,此时点 与原点 重合,连接 交 轴于点 ,得到第1个△ ;过点 作 轴的垂线交 于点 ,过点 作 轴的平行线交 于点 ,连接 与 交于点 ,得到第2个△ 按照此规律进行下去,则第2019个△ 的面积是 .