如图,在边长为4的正方形 中,点 是 的中点,点 在 上,且 , , 相交于点 ,则 的面积是 .
直线 过点 且与 轴垂直,若二次函数 (其中 是自变量)的图象与直线 有两个不同的交点,且其对称轴在 轴右侧,则 的取值范围是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, , 平分 交 于点 ,点 在 上, , 是 的外接圆,交 于点 .
(1)求证: 是 的切线;
(2)若 的半径为5, ,求 .
如图,等边三角形 的边长为4, 的半径为 , 为 边上一动点,过点 作 的切线 ,切点为 ,则 的最小值为 .
在等腰 中, ,点 是 边上一点(不与点 、 重合),连结 .
(1)如图1,若 ,点 关于直线 的对称点为点 ,连结 , ,则 ;
(2)若 ,将线段 绕点 顺时针旋转 得到线段 ,连结 .
①在图2中补全图形;
②探究 与 的数量关系,并证明;
(3)如图3,若 ,且 .试探究 、 、 之间满足的数量关系,并证明.
如图,已知点 ,点 为直线 上的一动点,点 , , 于点 ,连接 .若直线 与 正半轴所夹的锐角为 ,那么当 的值最大时, 的值为 .
在 中, ,有一个锐角为 , .若点 在直线 上(不与点 , 重合),且 ,则 的长为 .
如图,直线 与反比例函数 的图象相交于 、 两点,线段 的中点为点 ,过点 作 轴的垂线,垂足为点 .直线 过原点 和点 .若直线 上存在点 ,满足 ,则 的值为
A. |
|
B. |
3或 |
C. |
或 |
D. |
3 |
如图1,在 中, , ,点 是 边上一点(含端点 、 ,过点 作 垂直于射线 ,垂足为 ,点 在射线 上,且 ,连接 、 .
(1)求证: ;
(2)如图2,连接 ,点 、 、 分别为线段 、 、 的中点,连接 、 、 .求 的度数及 的值;
(3)在(2)的条件下,若 ,直接写出 面积的最大值.
如图,在正方形 中,点 是对角线 的中点,点 在线段 上,连接 并延长交 于点 ,过点 作 交 于点 ,连接 、 , 交 于 ,现有以下结论:① ;② ;③ ;④ 为定值;⑤ .以上结论正确的有 (填入正确的序号即可).
如图,在 中, , ,点 是 边的中点,点 是 边上一个动点,连接 ,以 为边在 的下方作等边三角形 ,连接 .则 的最小值是
A. |
|
B. |
1 |
C. |
|
D. |
|
如图, AB是⊙ O的直径,点 F在⊙ O上,∠ BAF的平分线 AE交⊙ O于点 E,过点 E作 ,交 AF的延长线于点 D,延长 DE、 AB相交于点 C.
(1)求证: CD是⊙ O的切线;
(2)若⊙ O的半径为5, ,求 BC的长.
如图,在平面直角坐标系中, 轴,垂足为 B,将△ ABO绕点 A逆时针旋转到△ AB 1 O 1的位置,使点 B的对应点 B 1落在直线 x上,再将△ AB 1 O 1绕点 B 1逆时针旋转到△ A 1 B 1 O 2的位置,使点 O 1的对应点 O 2也落在直线 x上,以此进行下去…若点 B的坐标为(0,3),则点 B 21的纵坐标为 .
某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:
【观察与猜想】
(1)如图1,在正方形 中,点 , 分别是 , 上的两点,连接 , , ,则 的值为 ;
(2)如图2,在矩形 中, , ,点 是 上的一点,连接 , ,且 ,则 的值为 ;
【类比探究】
(3)如图3,在四边形 中, ,点 为 上一点,连接 ,过点 作 的垂线交 的延长线于点 ,交 的延长线于点 ,求证: ;
【拓展延伸】
(4)如图4,在 中, , , ,将 沿 翻折,点 落在点 处得 ,点 , 分别在边 , 上,连接 , , .
①求 的值;
②连接 ,若 ,写出 的长度.