如图甲所示,在水平桌面上固定着两根相距20cm、相互平行的无电阻轨道P和Q,轨道一端固定一根电阻为0.0l的导体棒a,轨道上横置一根质量为40g、电阻为0.0lΩ的金属棒b,两棒相距20cm.该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中.开始时,磁感应强度B0=0.10T(设棒与轨道间的最大静摩擦力和滑动摩擦力相等,g取10m/s2)
(1)若保持磁感应强度Bo的大小不变,从t=O时刻开始,给b棒施加一个水平向右的拉力,使它做匀加速直线运动.此拉力F的大小随时问t变化关系如图乙所示.求匀加速运动的加速度及b棒与导轨间的滑动摩擦力.
(2)若从某时刻t=0开始,按图丙中磁感应强度B随时间t变化图象所示的规律变化,求在金属棒b开始运动前,这个装置释放的热量是多少?
图中a1b1c1d1和a2b2c2d2为在同一竖直面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。导轨的a1b1段与a2b2段是竖直的,距离为l1;c1d1段与c2d2段也是竖直的,距离为l2。x1y1与x2y2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m1和m2,它们都垂直于导轨并与导轨保持光滑接触。两杆与导轨构成的回路的总电阻为R。F为作用于金属杆x1y1上的竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。
光滑水平导轨宽L=1m,电阻不计,左端接有"6V 6W"的小灯。导轨上垂直放有一质量m=0.5kg、电阻r=2Ω的直导体棒,导体棒中间用细绳通过定滑轮吊一质量为M=1kg的钩码,钩码距地面高h=2m,如图所示。整个导轨处于竖直方向的匀强磁场中,磁感应强度为B=2T。释放钩码,在钩码落地前的瞬间,小灯刚好正常发光。(不计滑轮的摩擦,取g=10m/s2)求:⑴钩码落地前的瞬间,导体棒的加速度;⑵在钩码落地前的过程中小灯泡消耗的电能;⑶在钩码落地前的过程中通过电路的电量。
如图所示,光滑平行的金属导轨MN、PQ相距l,其框架平面与水平面成角,在M点和P点间接一个阻值为R的电阻,在两导轨间矩形区域内有垂直导轨平面向下、宽为d的匀强磁场,磁感应强度为B.一质量为m、电阻为r的导体棒ab,垂直搁置于导轨上,与磁场上边界相距d0,现使它由静止开始运动,在棒ab离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的接触,导轨电阻不计).求:
(1)棒ab在离开磁场下边界时的速度,
(2)棒ab通过磁场区的过程中整个电路所消耗的电能.
如图所示,固定的水平光滑金属导轨,间距为L,左端接有阻值为R的电阻,处在方向竖直、磁感应强度为B的匀强磁场中,质量为m的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻均可忽略.初始时刻,弹簧恰处于自然长度,导体棒具有水平向右的初速度v0.在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触.
(1)求初始时刻导体棒受到的安培力.
(2)若导体棒从初始时刻到速度第一次为零时,弹簧的弹性势能为Ep,则这一过程中安培力所做的功W1和电阻R上产生的焦耳热Q1分别为多少?
(3)导体棒往复运动,最终将静止于何处?从导体棒开始运动直到最终静止的过程中,电阻R上产生的焦耳热Q为多少?
如图所示,一半径为r的圆形导线框内有一匀强磁场,磁场方向垂直于导线框所在平面,导线框的左端通过导线接一对水平放置的平行金属板,两板间的距离为d,板长为l,t=0时,磁场的磁感应强度B从B0开始均匀增大,同时,在板2的左端且非常靠近板2的位置有一质量为m、带电量为-q的液滴以初速度v0水平向右射入两板间,该液滴可视为质点。
⑴要使该液滴能从两板间射出,磁感应强度随时间的变化率K应满足什么条件?
⑵要使该液滴能从两板间右端的中点射出,磁感应强度B与时间t应满足什么关系?
电磁炉专用平底锅的锅底和锅壁均由耐高温绝缘材料制成.起加热作用的是安在锅底的一系列半径不同的同心导电环.导电环所用的材料单位长度的电阻R=0.125Ω/m,从中心向外第n个同心圆环的半径为rn="(2n-1)" r1(n为正整数且n≤7),已知r1="1.0" cm.当电磁炉开启后,能产生垂直于锅底方向的变化磁场,已知该磁场的磁感应强度B的变化率为,忽略同心导电圆环感应电流之间的相互影响.
(1)求出半径为rn的导电圆环中产生的感应电动势瞬时表达式;
(2))半径为r1的导电圆环中感应电流的最大值I1m是多大?(计算中可取="10" )
(3)若不计其他损失,所有导电圆环的总功率P是多大?
如图所示,在xoy平面内存在B=2T的匀强磁场,OA与OCA为置于竖直平面内的光滑金属导轨,其中OCA满足曲线方程,C为导轨的最右端,导轨OA与OCA相交处的O点和A点分别接有体积可忽略的定值电阻R1=6Ω和R2=12Ω。现有一长L=1m、质量m=0.1kg的金属棒在竖直向上的外力F作用下,以v=2m/s的速度向上匀速运动,设棒与两导轨接触良好,除电阻R1、R2外其余电阻不计,求:
(1)金属棒在导轨上运动时R2上消耗的最大功率
(2)外力F的最大值
(3)金属棒滑过导轨OCA过程中,整个回路产生的热量。
如图所示,MN和PQ是两根放在竖直面内且足够长的平行金属导轨,相距l=50cm。导轨处在垂直纸面向里的磁感应强度B=5T的匀强磁场中。一根电阻为r=0.1Ω的金属棒ab可紧贴导轨左右运动。两块平行的、相距d=10cm、长度L=20cm的水平放置的金属板A和C分别与两平行导轨相连接,图中跨接在两导轨间的电阻R=0.4Ω。其余电阻忽略不计。已知当金属棒ab不动时,质量m=10g、带电量q=-10-3C的小球以某一速度v0沿金属板A和C的中线射入板间,恰能射出金属板(g取10m/s2)。求:
(1)小球的速度v0;
(2)若使小球在金属板间不偏转,则金属棒ab的速度大小和方向;
(3)若要使小球能从金属板间射出,则金属棒ab匀速运动的速度应满足什么条件?
如图所示,两条互相平行的光滑金属导轨位于水平面内,距离为L= 0.2m,在导轨的一端接有阻值为R=0.5Ω的电阻,在x≥0处有一与水平面垂直的均匀磁场,磁感强度B= 0.5T。一质量为m =" 0." lkg的金属直杆垂直放置在导轨上,并以v0 = 2m/s的初速度进入磁场,在安培力和一垂直于杆的水平外力F的共同作用下作匀变速直线运动,加速度大小为a=2m/s2、方向与初速度方向相反。设导轨和金属杆的电阻都可以忽略,且接触良好。求:
(1)电流为零时金属杆所处的位置
(2)电流为最大值的一半时施加在金属杆上外力F的大小和方向
(3)保持其他条件不变,而初速度v0取不同值,求开始时F的方向与初速度v0取值的关系
如图所示,光滑绝缘细杆竖直放置,它与以正电荷Q为圆心的某圆交于B、C两点,质量为m、带电荷量-q的有孔小球从杆上A点无初速度下滑,已知qQ,AB=h,小球滑到B点时的速度大小为求:
(1)小球由A到B的过程中电场力做的功;
(2)A、C两点的电势差
有条河流,流量Q=2m3·s-1,落差h=5m,现利用其发电,若发电机总效率为50%,输出电压为240V,输电线总电阻R=30Ω,允许损失功率为发电机输出功率的6%。为满足用电的需要,使用户获得220V电压,则(1)该输电线路所使用的理想升压、降压变压器的匝数比各是多少?(2)能使多少盏“220V 100W”的电灯正常发光?
如图所示,在真空中速度v =6.4×107 m/s的电子束连续地射入两平行极板之间,极板长度L=8.0×10-2 m,间距d =0.50×10-2 m,两极板上加50 Hz的交流电压U=U0sinωt,如果所加电压的最大值U0超过某一值Uc时,将开始出现以下现象:电子束有时能通过两极板,有时则不能通过,求Uc的大小.(me=9.0×10-31 kg,e=1.6×10-19 C)
如图,在一匀强电场中的A点,有一点电荷,并用绝缘细线与O点相连,原来细线刚好被水平拉直,而没有伸长。先让点电荷从A点由静止开始运动,试求点电荷经O点正下方时的速率v。已知电荷的质量m=1×10-4kg,电量q = +1.0×10-7C,细线长度L=10cm,电场强度E=1.73×104V/m,g=10m/s2。
如图所示,粗糙的水平绝缘轨道与竖直放置的光滑绝缘的圆形轨道平滑连接,处于水平方向的匀强电场中,圆形轨道的最低点有A、B两带电小球,中间压缩一轻弹簧,弹簧与A、B均不连接,已知A、B两球的质量均为m,A、B两球均带正电,电量均为q,A球与水平轨道间的动摩擦因数为,,电场强度,圆形轨道半径为R,由静止释放AB后,B恰能做完整的圆周运动。假定A、B球不再碰撞。求:从释放开始到A在水平轨道上运动的速度大小为其被释放时速度大小的一半时所需要的时间。(不计A、B间的静电作用,设弹簧弹力足够大,且作用时间极短)