如图所示是利用高频交流焊接自行车零件的原理图,其中外圈A是通过高频交流电的线圈,B是自行车的零件,a是待焊接的接口,焊口两端接触在一起。当A中通有交变电流时,B中会产生感应电流,使得接口处的金属融化而焊接起来
问:(1)为什么在其他条件不变的情况下,交变电流的频率越高,焊接得越快?
(2)为什么焊接过程中,接口a处已经融化而零件的其他部分并不很热?
如图22所示,M、N是水平放置的很长的平行金属板,两板间有垂直于纸面沿水平方向的匀强磁场,其磁感应强度大小为B=0.25T,两板间距d=0.4m,在M、N板间右侧部分有两根无阻导线P、Q与阻值为0.3的电阻相连。已知MP和QN间距离相等且等于PQ间距离的一半,一根总电阻为r=0.2均匀金属棒ab在右侧部分紧贴M、N和P、Q无摩擦滑动,忽略一切接触电阻。现有重力不计的带正电荷q=1.6×10-9C的轻质小球以v0=7m/s的水平初速度射入两板间恰好能做匀速直线运动,则:
(1)M、N间的电势差应为多少?
(2)若ab棒匀速运动,则其运动速度大小等于多少?方向如何?
(3)维持棒匀速运动的外力为多大?
如图甲所示,一边长L=2.5m、质量m=0.5kg的正方形金属线框,放在光滑绝缘的水平面上,整个装置放在方向竖直向上、磁感应强度B=0.8T的匀强磁场中,它的一边与磁场的边界MN重合。在水平力F作用下由静止开始向左运动,经过5s线框被拉出磁场。测得金属线框中的电流随时间变化的图像如乙图所示,在金属线框被拉出的过程中。
⑴求通过线框导线截面的电量及线框的电阻;
⑵写出水平力F随时间变化的表达式;
⑶已知在这5s内力F做功1.92J,那么在此过程中,线框产生的焦耳热是多少?
如图所示,MN、PQ是相互交叉成60°角的光滑金属导轨,O是它们的交点且接触良好.两导轨处在同一水平面内,并置于有理想边界的匀强磁场中(图中经过O点的虚线即为磁场的左边界).导体棒ab与导轨始终保持良好接触,并在弹簧S的作用下沿导轨以速度v0向左匀速运动.已知在导体棒运动的过程中,弹簧始终处于弹性限度内.磁感应强度的大小为B,方向如图.当导体棒运动到O点时,弹簧恰好处于原长,导轨和导体棒单位长度的电阻均为r,导体棒ab的质量为m.求:
(1)导体棒ab第一次经过O点前,通过它的电流大小;
(2)弹簧的劲度系数k;
(3)从导体棒第一次经过O点开始直到它静止的过程中,导体棒ab中产生的热量.
如图(甲)所示为一种研究高能粒子相互作用的装置,两个直线加速器均由k个长度逐个增长的金属圆筒组成(整个装置处于真空中。图中只画出了6个圆筒,作为示意),它们沿中心轴线排列成一串,各个圆筒相间地连接到正弦交流电源的两端,设金属圆筒内部没有电场,且每个圆筒间的缝隙宽度很小,带电粒子穿过缝隙的时间可忽略不计。为达到最佳加速效果,需要调节至粒子穿过每个圆筒的时间恰为交流电的半个周期,粒子每次通过圆筒缝隙时,都恰为交流电压的峰值。
|
如图所示,可视为质点的物块A、B、C放在倾角为37O、长L=2m的固定斜面上,物块与斜面间的动摩擦因数μ=0.5,A与B紧靠在一起,C紧靠在固定挡板上,物块的质量分别为mA=0.80kg、mB=0. 40kg,其中A不带电,B、C的带电量分别为qB=+4.0×10-5C、qC=+2.0×10-5C,且保持不变。开始时三个物块均能保持静止且与斜面间均无摩擦力作用。如果选定两点电荷在相距无穷远处的电势能为0,则相距为r时,两点电荷具有的电势能可表示为。现给A施加一平行于斜面向上的力F,使A在斜面上作加速度大小为a=2.5m/s2的匀加速直线运动,经过时间t0物体A、B分离并且力F变为恒力。当A运动到斜面顶端时撤去力F。
已知静电力常量k=9.0×109N·m2/C2,g=10m/s2,sin37O =0.6,cos37O =0.8。求:
(1)未施加力F时物块B、C间的距离;
(2)t0时间内库仑力做的功;
(3)力F对A物块做的总功。
(16分)如图所示,固定于水平桌面上足够长的两光滑平行导轨PQ、MN,导轨的电阻不计,间距为d = 0.5m,P、M两端接有一只理想电压表,整个装置处于竖直向下的磁感应强度B = 0.2T的匀强磁场中.电阻均为r = 0.1Ω、质量分别为m1 = 0.3kg和m2 = 0.5kg的两金属棒ab、cd平行的搁在导轨上,现固定棒ab,让cd在水平恒力F = 0.8N的作用下,由静止开始做加速运动,试求:
(1)cd棒两端哪端电势高;
(2)当电压表的读数为U = 0.2V时,cd棒受到的安培力多大;
(3)棒cd能达到的最大速度vm.
如图所示,一矩形金属框架与水平面成=37°角,宽L =0.4m,上、下两端各有一个电阻R0 =2Ω,框架的其他部分电阻不计,框架足够长,垂直于金属框平面的方向有一向上的匀强磁场,磁感应强度B=1.0T.ab为金属杆,与框架良好接触,其质量m=0.1Kg,杆电阻r=1.0Ω,杆与框架的动摩擦因数μ=0.5.杆由静止开始下滑,在速度达到最大的过程中,上端电阻R0产生的热量Q0="0." 5J.(sin37°=0.6,cos37°=0.8)求:
(1)流过R0的最大电流;
(2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;
(3)在时间1s内通过杆ab横截面积的最大电量.
(18分)1897年汤姆逊发现电子后,许多科学家为测量电子的电荷量做了大量的探索。1907-1916年密立根用带电油滴进行实验,发现油滴所带的电荷量是某一数值的整数倍,于是称这数值为基本电荷。
如图所示,完全相同的两块金属板正对着水平放置,板间距离为。当质量为的微小带电油滴在两板间运动时,所受空气阻力的大小与速度大小成正比。两板间不加电压时,可以观察到油滴竖直向下做匀速运动,通过某一段距离所用时间为;当两板间加电压(上极板的电势高)时,可以观察到同一油滴竖直向上做匀速运动,且在时间内运动的距离与在时间内运动的距离相等。忽略空气浮力。重力加速度为。
(1)判断上述油滴的电性,要求说明理由;
(2)求上述油滴所带的电荷量;
(3)在极板间照射X射线可以改变油滴的带电量。再采用上述方法测量油滴的电荷量。如此重复操作,测量出油滴的电荷量如下表所示。如果存在基本电荷,请根据现有数据求出基本电荷的电荷量(保留到小数点后两位)。
实验次序 |
1 |
2 |
3 |
4 |
5 |
电荷量 |
0.95 |
1.10 |
1.41 |
1.57 |
2.02 |
洛伦兹力演示仪是由励磁线圈(也叫亥姆霍兹线圈)、洛伦兹力管和电源控制部分组成的。励磁线圈是一对彼此平行的共轴串联的圆形线圈,它能够在两线圈之间产生匀强磁场。洛伦兹力管的圆球形玻璃泡内有电子枪,能够连续发射出电子,电子在玻璃泡内运动时,可以显示出电子运动的径迹。其结构如图所示。
(1)给励磁线圈通电,电子枪垂直磁场方向向左发射电子,恰好形成如“结构示意图”所示的圆形径迹,则励磁线圈中的电流方向是顺时针方向还是逆时针方向?
(2)两个励磁线圈中每一线圈为N = 140匝,半径为R =" 140" mm,两线圈内的电流方向一致,大小相同为I = 1.00A,线圈之间距离正好等于圆形线圈的半径,在玻璃泡的区域内产生的磁场为匀强磁场,其磁感应强度(特斯拉)。灯丝发出的电子经过加速电压为U=125V的电场加速后,垂直磁场方向进入匀强磁场区域,通过标尺测得圆形径迹的直径为D = 80.0mm,请估算电子的比荷。(答案保留2位有效数字)
(3)为了使电子流的圆形径迹的半径增大,可以采取哪些办法?
两个带电量均为+q小球,质量均为m,固定在轻质绝缘直角框架OAB(框架的直角边长均为L)的两个端点A、B上,另一端点用光滑铰链固定在O点,整个装置可以绕垂直于纸面的水平轴在竖直平面内自由转动。
(1)若施加竖直向上的匀强电场E1,使框架OA边水平、OB边竖直并保持静止状态,则电场强度E1多大?
(2)若改变匀强电场的大小和方向(电场仍与框架面平行),为使框架的OA边水平、OB边竖直(B在O的正下方),则所需施加的匀强电场的场强E2至少多大?方向如何?
(3)若框架处在匀强电场E1中OA边水平、OB边竖直并保持静止状态时,对小球B施加一水平向右的恒力F,则小球B在何处时速度最大?最大值是多少?
(共16分)如图所示,MN和PQ为竖直方向的两平行长直金属导轨,间距l为0.40m,电阻不计. 导轨所在平面与磁感庆强度B=5.0T的匀强磁场垂直。质量m=6.0×10-2kg、电阻r=0.5Ω的金属杆ab始终垂直于导轨,并与其保持光滑接触。导轨两端分别接有阻值均为3.0Ω的电阻R1和R2。重力加速度取10m/s2,且导轨足够长,若使金属杆ab从静止开始下滑,求:
(1)杆下滑的最大速率vm;
(2)稳定后整个电路耗电的总功率P;
(3)杆下滑速度稳定之后电阻R2两端的电压U.
甲为某同学研究自感现象的实验电路图,用电流传感器显示各时刻通过线圈L的电流.电路中电灯的电阻R1="6.0" Ω,定值电阻R="2.0" Ω,AB间电压U="6.0" V.开关S原来闭合,电路处于稳定状态.在t1=1.0×10-3 s时刻断开开关S,此时刻前后电流传感器显示的电流随时间变化图线如图乙所示.
图甲
图乙
(1)求出线圈L的直流电阻RL;
(2)在图甲中用箭头标出断开开关后瞬间通过电灯R1的电流方向;
(3)在t2=1.6×10-3 s时刻,线圈L中的感应电动势的大小是多少?
如下图,在水平面上有两条平行导电导轨MN、PQ,导轨间距离为l.匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度的大小为B.两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为m1、m2和R1、R2.两杆与导轨接触良好,与导轨间的动摩擦因数皆为μ.已知杆1被外力拖动,以恒定的速度v0沿导轨运动;达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略.求此时杆2克服摩擦力做功的功率.
半径为a的圆形区域内有均匀磁场,磁感应强度为B="0.2" T,磁场方向垂直纸面向里,半径为b的金属圆环与磁场同心放置,磁场与环面垂直,其中a="0.4" m,b="0.6" m,金属环上分别接有灯L1、L2,两灯的电阻均为R0="2" Ω,一金属棒MN与金属环接触良好,棒与环的电阻均忽略不计.
(1)若棒以v0="5" m/s的速率在环上向右匀速滑动,求棒滑过圆环直径OO′的瞬间(如下图所示)MN中的电动势和流过灯L1的电流;
(2)撤去中间的金属棒MN,将右面的半圆环OL2O′以OO′为轴向上翻转90°,若此时磁场随时间均匀变化,其变化率为,求L1的功率.