如图所示,光滑水平面上,一个小球以初速度v向右匀速运动,右侧有一个线长为l的单摆在垂直纸面方向上做小角度振动。摆球的半径为r(不可忽略),其下端在最低点O处恰好与水平面接触,当小球在A点时,摆球恰好处于距离平衡位置最大位移处。若小球与摆球在O点处相撞,小球的体积可忽略,当地重力加速度为g,求:
(1)单摆振动的周期;
(2)AO间的距离。
如图所示,有人利用安装在气球载人舱内的单摆来确定气球的高度.已知该单摆在海平面处的周期是T0.当气球停在某一高度时,测得该单摆周期为T.求该气球此时离海平面的高度h.(把地球看做质量均匀分布的半径为R的球体)
如图甲是一个单摆振动的情形,O是它的平衡位置,B、C是摆球所能到达的最远位置.
设摆球向右运动为正方向.图乙是这个单摆的振动图象.根据图象回答:
(1)单摆振动的频率是多大?
(2)开始时刻摆球在何位置?
(3)若当地的重力加速度为10 m/s2,这个摆的摆长是多少?
如图所示,单摆摆长为Lm,做简谐运动,C点在悬点O的正下方,D点与C相距为X m,C、D之间是光滑水平面,当摆球A到左侧最大位移处时,小球B从D点以某一速度v匀速地向C点运动,A、B二球在C点迎面相遇,求小球B的速度大小。 (重力加速度为g)(本题15分)
如图所示,光滑圆弧轨道的半径为R,圆弧底部中点为O,两个相同的小球分别在O正上方h处的A点和离O很近的轨道B点,现同时释放两球,使两球正好在O点相碰。问h应为多高?
如图7为一双线摆,在同一水平天花板上用两根等长的细线悬挂一小球,已知线长为L,摆线与水平方向夹角为θ,小球的尺寸忽略不计。当小球在垂直纸面做简谐运动时,求此摆的振动周期?(当地重力加速度为g)
(如图甲所示是一个单摆振动的情形,O是它的平衡位置,B、C是摆球所能到达的最远位置.设摆球向右方向运动为正方向.图乙所示是这个单摆的振动图象.根据图象回答:()
(1) 若当地的重力加速度为10 m/s2,试求这个摆的摆长是多少?
(2)如果摆球的质量m=0.1kg,在摆动过程中通过O处时绳上拉力F0= 1.01N,则摆球通过O点时的动能Ek是多少?
如图12-1-6所示,一个光滑的圆弧形槽半径为R,放在水平地面上,圆弧所对的圆心角小于5°.AD的长为x,今有一小球m1以沿AD方向的初速度v从A点开始运动,要使小球m1可以与固定在D点的小球m2相碰撞,那么小球m1的速度v应满足什么条件?
如图所示,有两个小球A、B的大小忽略不计,长为L的细线悬挂A球,现将小球A拉离平衡位置一个很小的角度,然后由静止释放,A摆至最低点P时,恰与静止在P处的B球发生正碰,碰后A继续向右摆动,B球以速度v沿光滑水平面向右运动,与右侧的墙壁碰撞后以原速率返回,当B球重新回到位置P时恰与A再次相遇,求位置P与墙壁间的距离d.
(13分)动画片《熊出没》中有这样一个情节:某天熊大和熊二中了光头强设计的陷阱, 被挂在了树上,聪明的熊大想出了一个办法,让自己和熊二荡起来使绳断裂从而得救,其过程可简化如图所示,设悬点为0,离地高度为H=6m,两熊可视为质点且总质量m=500kg,重心为A,荡下过程重心到悬点的距离L=2m且保持不变,绳子能承受的最大张力为T=104N,光头强(可视为质点)位于距离0点水平距离s=5m的B点处,不计一切阻力,重力加速度g=10m/s2。
(1)熊大和熊二为了解救自己,荡至最高点时绳与竖直方向的夹角α至少为多大?
(2)设熊大和熊二刚好在向右摆到最低点时绳子断裂,则他们的落地点离光头强的距离为多少?
(3)如果重心A到0的距离可以改变,且两熊向右摆到最低点时绳子恰好断裂,有无可能在落地时砸中光头强?请通过计算说明。
地球半径为R0,地表面重力加速度为g0,登山运动员在某山的山顶做单摆实验,测得单摆的摆长为L,周期为T,由以上条件表示此山的高度。
如图所示,单摆摆长为1m,做简谐运动,C点在悬点O的正下方,D点与C相距为2m,C、D之间是光滑水平面,当 小摆球A从右侧最大位移处无初速度释放时,小球B从D点以某一速度匀速地向C点运动,A、B两球在C点迎面相遇,求小球B的速度大小.(π2=g)
将一测力传感器连接到计算机上就可以测量快速变化的力,图甲中O点为单摆的悬点,现将小球(可视为质点)拉到A点,此时细线处于张紧状态,释放摆球,则摆球在竖直平面内的ABC之间来回摆动,其中B点为运动中最低位置。∠AOB=∠COB=α,α小于10°且是未知量,图乙表示由计算机得到细线对摆球的拉力大小F随时间变化的曲线,且图中t=0时刻为摆球从A点开始运动的时刻,据力学规律和题中信息(g取10m/s2),求:
(1)单摆的周期和摆长; (2)摆球质量及摆动过程中的最大速度.
如图所示,在水平地面上有一段光滑圆弧形槽,弧的半径是R,所对圆心角小于10o,现在圆弧的右侧边缘M处放一个小球A,使其由静止下滑,则:
(1)球由A至O的过程中所需时间t为多少?在此过程中能量如何转化?(定性说明)
(2)若在圆弧的最低点O的正上方h处由静止释放小球B,让其自由下落,同时A球从圆弧右侧由静止释放,欲使A、B两球在圆弧最低点O处相遇,则B球下落的高度h是多少?