如图所示,两根通电直导线用四根长度相等的绝缘细线悬挂于O、O'两点,已知OO'连线水平,导线静止时绝缘细线与竖直方向的夹角均为θ,保持导线中的电流大小和方向不变,在导线所在空间加上匀强磁场后绝缘细线与竖直方向的夹角均增大了相同的角度,下列分析正确的是()
A.两导线中的电流方向一定相同 |
B.两导线中的电流方向一定相反 |
C.所加磁场的方向可能沿Z轴正向 |
D.所加磁场的方向可能沿y轴负向 |
如图所示,在一个范围足够大、垂直纸面向里的匀强磁场中,用绝缘细线将金属棒吊起,使其呈水平状态. 已知金属棒长L=0.1m,质量m=0.05kg,棒中通有I=10A的向右的电流,取g =10m/s2.
(1)若磁场的磁感应强度B=0.2T,求此时金属棒受到的安培力F的大小;
(2)若细线拉力恰好为零,求磁场的磁感应强度B的大小.
把一根长为L = 10cm的直导线垂直磁感线方向放入如图所示的匀强磁场中。
(1)当导线中通以I1 = 2A的电流时,导线受到的安培力大小为 1.0×10-7N,试求该磁场的磁感应强度的大小B。
(2)若该导线中通以I2 = 3A的电流,试求此时导线所受安培力大小F,并判断安培力的方向。
如图所示,有一区域足够大的匀强磁场,磁感应强度为B,磁场方向与水平放置的导轨垂直,导轨宽度为L,右端接有电阻R,MN是一根质量为m的金属棒,金属棒与导轨垂直放置,且接触良好,金属棒与导轨电阻均不计,金属棒与导轨间的动摩擦因数为μ,现给金属棒一水平冲量,使它以初速度沿导轨向左运动,已知金属棒在整个运动过程中,通过任一截面的总电荷量为q,求:
(1)金属棒运动的位移s;
(2)金属棒运动过程中回路产生的焦耳热Q;
(3)金属棒运动的时间t
如图所示,质量为m的足够长的“[”金属导轨abcd放在倾角为θ的光滑绝缘斜面上,bc段电阻为R,其余段电阻不计。另一电阻为R、质量为m的导体棒PQ放置在导轨上,始终与导轨接触良好,PbcQ构成矩形。棒与导轨间动摩擦因数为μ,棒左侧有两个固定于斜面的光滑立柱。导轨bc段长为L,以ef为界,其左侧匀强磁场垂直斜面向上,右侧匀强磁场方向沿斜面向上,磁感应强度大小均为B。在t=0时,一沿斜面方向的作用力F垂直作用在导轨的bc边上,使导轨由静止开始沿斜面向下做匀加速直线运动,加速度为a。
(1)请通过计算证明开始一段时间内PQ中的电流随时间均匀增大。
(2)求在电流随时间均匀增大的时间内棒PQ横截面内通过的电量q和导轨机械能的变化量△E。
(3)请在F-t图上定性地画出电流随时间均匀增大的过程中作用力F随时间t变化的可能关系图,并写出相应的条件。(以沿斜面向下为正方向)
如图所示,在倾角为θ=30°的斜面上,固定一宽L=0.25m的平行金属导轨,在导轨上端接入电源和变阻器.电源电动势E=12V,内阻r=1.0Ω一质量m=20g的金属棒ab与两导轨垂直并接触良好.整个装置处于磁感强度B=0.80T、垂直于斜面向上的匀强磁场中(导轨与金属棒的电阻不计).金属导轨是光滑的,取g=10m/s2,要保持金属棒在导轨上静止,求:
(1)金属棒所受到的安培力;
(2)通过金属棒的电流;
(3)滑动变阻器R接入电路中的阻值.
电磁阻尼制动是一种利用电磁感应原理工作的新型制动方式,它的基本原理如图甲所示。水平面上固定一块铝板,当一竖直方向的条形磁铁在铝板上方几毫米高度上水平经过时,铝板内感应出的电流会对磁铁的运动产生阻碍作用。电磁阻尼制动是磁悬浮列车在高速运行时进行制动的一种方式,某研究所制成如图乙所示的车和轨道模型来定量模拟磁悬浮列车的制动过程。车厢下端安装有电磁铁系统,能在长为L1=0.6m,宽L2=0.2m的矩形区域内产生竖直方向的匀强磁场,磁感应强度可随车速的减小而自动增大(由车内速度传感器控制),但最大不超过B1=2T,将铝板简化为长大于L1,宽也为L2的单匝矩形线圈,间隔铺设在轨道正中央,其间隔也为L2,每个线圈的电阻为R1=0.1Ω,导线粗细忽略不计。在某次实验中,模型车速度为v0=20m/s时,启动电磁铁系统开始制动,车立即以加速度a1=2m/s2做匀减速直线运动,当磁感应强度增加到B1时就保持不变,直到模型车停止运动。已知模型车的总质量为m1=36kg,空气阻力不计。不考虑磁感应强度的变化引起的电磁感应现象以及线圈激发的磁场对电磁铁产生磁场的影响。
(1)电磁铁的磁感应强度达到最大时,模型车的速度v1为多大?
(2)模型车的制动距离为多大?
(3)某同学受到上述装置的启发,设计了进一步提高制动效果的方案如下,将电磁铁换成多个并在一起的永磁铁组,两个相邻的磁铁磁极的极性相反,且将线圈改为连续铺放,相邻线圈接触紧密但彼此绝缘,如图丙所示,若永磁铁激发的磁感应强度恒定为B2,模型车质量m1及开始减速的初速度v0均不变,试通过必要的公式分析这种设计在提高制动能力上的合理性。
如图,用粗细均匀的电阻丝折成边长为L的平面等边三角形框架,每个边长L的电阻均为r,三角形框架的两个顶点与一电动势为E、内阻为r的电源相连接,垂直于框架平面有磁感应强度为B的匀强磁场,则三角形框架受到的安培力的合力大小为( )
A.0 | B. | C. | D. |
如图所示,有一光滑、不计电阻且较长的“"平行金属导轨,间距L="l" m,导轨所在的平面与水平面的倾角为3 7°,导轨空间内存在垂直导轨平面的匀强磁场。现将一质量m=0.1kg、电阻R=2的金属杆水平靠在导轨处,与导轨接触良好。(g=l0m/s2,sin37°=0.6 cos37°=0.8)
(1)若磁感应强度随时间变化满足B=2+0.2t(T),金属杆由距导轨顶部l m处释放,求至少经过多长时间释放,会获得沿斜面向上的加速度;
(2)若匀强磁场大小为定值,对金属杆施加一个平行于导轨斜面向下的外力F,其大小为为金属杆运动的速度,使金属杆以恒定的加速度a=10m/s2沿导轨向下做匀加速运动,求匀强磁场磁感应强度B的大小;
(3)若磁感应强度随时间变化满足时刻金属杆从离导轨顶端So="l" m处静止释放,同时对金属杆施加一个外力,使金属杆沿导轨下滑且没有感应电流产生,求金属杆下滑5 m所用的时间。
如图所示,光滑导轨与水平面成θ角,导轨宽L.匀强磁场磁感应强度为B.金属杆长也为L,质量为m,水平放在导轨上.当回路总电流为I1时,金属杆正好能静止.求:
(1)B至少多大?这时B的方向如何?
(2)若保持B的大小不变而将B的方向改为竖直向上,应把回路总电流I2调到多大才能使金属杆保持静止?
如图所示,宽度的足够长的U形金属框架水平放置,框架中连接电阻,框架处在竖直向上的匀强磁场中,磁感应强度,框架导轨上放一根质量为、电阻,的金属棒,棒与导轨间的动摩擦因数,现用功率恒定的牵引力使棒从静止开始沿导轨运动(棒始终与导轨接触良好且垂直),当整个回路产生热量时刚好获得稳定速度,此过程中,通过棒的电量(框架电阻不计,取)求:
(1)当导体棒的速度达到时,导体棒上两点电势的高低?导体棒两端的电压?导体棒的加速度?
(2)导体棒稳定的速度?
(3)导体棒从静止到刚好获得稳定速度所用的时间?
如图所示,电阻不计、间距L=1m、足够长的光滑金属导轨ab、cd与水平面成θ=37°角,导轨平面矩形区域efhg内分布着磁感应强度的大小B=1T,方向垂直导轨平面向上的匀强磁场,边界ef、gh之间的距离D=1.4m。现将质量m=0.1kg、电阻的导体棒P、Q相隔Δt=0.2s先后从导轨顶端由静止自由释放,P、Q在导轨上运动时始终与导轨垂直且接触良好,P进入磁场时恰好匀速运动,Q穿出磁场时速度为2.8m/s。已知重力加速度g=10m/s2,sin37°=0.6,求
(1)导轨顶端与磁场上边界ef之间的距离S;
(2)从导体棒P释放到Q穿出磁场的过程,回路中产生的焦耳热Q总。
截流长直导线周围磁场的磁感应强度大小为,式中常量k>0,I为电流强度,r为距导线的距离。在水平长直导线MN正下方,矩形线圈abcd通以逆时针方向的恒定电流,被两根等长的轻质绝缘细线静止地悬挂,如图所示。开始时MN内不同电流,此时两细线内的张力均为。当MN通以强度为的电流时,两细线内的张力均减小为,当MN内的电流强度变为时,两细线的张力均大于
(1)分别指出强度为的电流和方向;
(2)MN分别通以强度为电流时,线框受到的安培力大小之比。
如图所示,金属导轨
和
,
与
平行且间距为
,所在平面与水平面夹角为
,
、
连线与
垂直,
、
间接有阻值为R的电阻;光滑直导轨
和
在同一水平面内,与
的夹角都为锐角
。均匀金属棒
和
质量均为
,长均为
,
棒初始位置在水平导轨上与
重合;
棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为
(
较小),由导轨上的小立柱1和2阻挡而静止。空间有方向竖直的匀强磁场(图中未画出)。两金属棒与导轨保持良好接触。不计所有导轨和
棒的电阻,
棒的阻值为
,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为
。
(1)若磁感应强度大小为B,给 棒一个垂直于 、水平向右的速度 ,在水平导轨上沿运动方向滑行一段距离后停止, 棒始终静止,求此过程 棒上产生的热量;
(2)在(1)问过程中, 棒滑行距离为 ,求通过 棒某横截面的电荷量;
(3)若 棒以垂直于 的速度 在水平导轨上向右匀速运动,并在 位置时取走小立柱1和2,且运动过程中 棒始终静止。求此状态下最强磁场的磁感应强度及此磁场下 棒运动的最大距离。