如图所示,质量为m、长为L的导体棒电阻为R,初始时静止于光滑的水平轨道上,电源电动势为E,内阻不计。匀强磁场的磁感应强度为B,其方向与轨道平面成θ角斜向上方,开关闭合后导体棒开始运动,则( )
A.导体棒向左运动 |
B.开关闭合瞬间导体棒MN所受安培力为 |
C.开关闭合瞬间导体棒MN所受安培力为 |
D.开关闭合瞬间导体棒MN的加速度为 |
倾角为θ的导电轨道间接有电源,轨道上静止放有一根金属杆ab.现垂直轨道平面向上加一匀强磁场,如图所示,磁感应强度B由零逐渐增加的过程中,ab杆受到的静摩擦力( )
A.逐渐增大 | B.逐渐减小 |
C.先增大后减小 | D.先减小后增大 |
矩形导线框abcd放在匀强磁场中,在外力控制下静止不动,如图(甲)所示,磁感线方向与线圈平面垂直,磁感应强度B随时间变化的图象如图(乙)所示。t=0时刻,磁感应强度的方向垂直纸面向里,在0~4s时间内,线框ab边所受安培力随时间变化的图象(力的方向规定以向左为正方向)可能是下列选项中的
如图所示,两根光滑金属导轨平行放置,导轨所在平面与水平面间的夹角为θ。整个装置处于匀强磁场中。金属杆ab垂直导轨放置,当杆中通有从a到b的恒定电流I时,金属杆ab刚好静止。则 ( )
A.磁场方向一定是竖直向上 |
B.磁场方向竖直向上时,磁场的磁感应确定最小 |
C.ab受安培力的最小值为 |
D.ab受安培力的最小值为 |
如图所示,一根长为L的铝棒用两个劲度系数均为的弹簧水平地悬挂在匀强磁场中,磁感应强度为B,方向垂直纸面向里,当铝棒中通过的电流I方向从左到右时,弹簧的长度变化了,则下面说法正确的是( )
A.弹簧长度缩短了, |
B.弹簧长度缩短了, |
C.弹簧长度伸长了, |
D.弹簧长度伸长了, |
在同一水平面上的两导轨互相平行,相距 m,并处于竖直向上的匀强磁场中,一根质量为kg的金属棒放在导轨上,与导轨垂直,如图所示,当导体棒中电流A,金属棒做匀速直线运动,当金属棒中电流A时金属棒将获得m/s2加速度,求该匀强磁场的磁感应强度。
如图两条通电直导线平行放置,长度为L1的导线中电流为I1,长度为L2的导线中电流为I2,L2所受L1的磁场力大小为F,则L2所在处由L1产生的磁场的磁感应强度大小为( )
A. | B. | C. | D. |
如图所示,E、F分别表示蓄电池两极,P、Q分别表示螺线管两端.当闭合开关时,发现小磁针N极偏向螺线管Q端.下列判断正确的是( )
A.E为蓄电池正极 | B.螺线管P端为S极 |
C.流过电阻R的电流方向向上 | D.管内磁场方向由P指向Q |
如图所示,光滑的平行导轨间距为L,倾角为θ,处在磁感应强度为B的匀强磁场中,导轨中接入电动势为E、内阻为r的直流电源,电路中其余电阻不计,将质量为m、电阻为R的导体棒由静止释放,求:
(1)释放瞬间导体棒所受安培力的大小和方向;
(2)导体棒在释放瞬间的加速度大小.
如图所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S接通一瞬间,两铜环的运动情况是( )
A.同时向两侧推开 |
B.同时向螺线管靠拢 |
C.一个被推开,一个被吸引 |
D.因为电源正负极未知,无法具体判断 |
19世纪20年代,以塞贝克(数学家)为代表的科学家已认识到:温度差会引起电流.安培考虑到地球自转造成了太阳照射后正面与背面的温度差,从而提出如下假设:地球磁场是由地球的环形电流引起的,则该假设中的电流方向是(注:磁子午线是地球磁场N极与S极在地球表面的连线) ( )
A.由东向西垂直磁子午线 | B.由西向东垂直磁子午线 |
C.由南向北沿子午线 | D.由赤道向两极沿子午线 |
水平桌面上放条形磁铁,磁铁正中上方吊着导线与磁铁垂直,导线中通入向纸内的电流,如图所示,产生的情况是( )
A.悬线上的拉力没有变化 | B.悬线上的拉力变大 |
C.悬线上的拉力变小 | D.条形磁铁对桌面压力变小 |