高中物理

如图所示,P、Q为水平面内平行放置的光滑金属长直导轨,间距为L1,处在竖直向下、磁感应强度大小为B1的匀强磁场中,一导体杆ef垂直于P、Q放在导轨上,在外力作用下向左做匀速直线运动.质量为m、每边电阻均为r、边长为L2的正方形金属框abcd置于竖直平面内,两顶点a、b通过细导线与导轨相连,磁感应强度大小为B2的匀强磁场垂直金属框向里,金属框恰好处于静止状态,不计其余电阻和细导线对a、b点的作用力.

(1)通过ab边的电流Iab是多大?  
(2)导体杆ef的运动速度v是多大?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(10分)如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1m、导轨平面与水平面成θ=37°角,下端连接阻值为R的电阻,匀强磁场方向与导轨平面垂直.质量为0.2kg,电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.

(1)求金属棒沿导轨由静止开始下滑时的加速度大小.
(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小.
(3)在上问中,若R=2Ω,金属棒中的电流方向由a到b,求磁感应强度的大小与方向(g=10m/s2,sin37°=0.6,cos37°=0.8)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图(甲)所示,M1M4、N1N4为平行放置的水平金属轨道,M4P、N4Q为相同半径,平行放置的竖直半圆形金属轨道,M4、N4为切点,P、Q为半圆轨道的最高点,轨道间距L=1.0m,圆轨道半径r=0.32m,整个装置左端接有阻值R=0.5Ω的定值电阻。M1M2N2N1、M3M4N4N3为等大的长方形区域Ⅰ、Ⅱ,两区域宽度 d=0.5m,两区域之间的距离s=1.0m;区域Ⅰ内分布着均匀的变化的磁场B1,变化规律如图(乙)所示,规定竖直向上为B1的正方向;区域Ⅱ内分布着匀强磁 场B2,方向竖直向上。两磁场间的轨道与导体棒CD间的动摩擦因数为μ=0.2,M3N3右侧的直轨道及半圆形轨道均光滑。质量m=0.1kg,电阻R0=0.5Ω的导体棒CD在垂直于棒的水平恒力F拉动下,从M2N2处由静止开始运动,到达M3N3处撤去恒力F,CD棒匀速地穿过匀强磁场区,恰好通过半圆形轨道的最高点PQ处。若轨道电阻、空气阻力不计,运动过程导棒与轨道接触良好且始终与轨道垂直,g取10m/s2求:

(1)水平恒力F的大小;
(2)CD棒在直轨道上运动过程中电阻R上产生的热量Q;
(3)磁感应强度B2的大小。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,足够长的光滑平行金属导轨cd和ef,水平放置且相距L,在其左端各固定一个半径为r的四分之三金属光滑圆环,两圆环面平行且竖直.在水平导轨和圆环上各有一根与导轨垂直的金属杆,两金属杆与水平导轨、金属圆环形成闭合回路,两金属杆质量均为m,电阻均为R,其余电阻不计.整个装置放在磁感应强度大小为B、方向竖直向上的匀强磁场中.当用水平向右的恒力F=mg拉细杆a,达到匀速运动时,杆b恰好静止在圆环上某处,试求:

(1)杆a做匀速运动时,回路中的感应电流;
(2)杆a做匀速运动时的速度;
(3)杆b静止的位置距圆环最低点的高度.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

一矩形线圈abcd放置在如图所示的有理想边界的匀强磁场中(OO′的左边有匀强磁场,右边没有),线圈的两端接一只灯泡。已知线圈的匝数n=100、电阻r=1.0 Ω,ab边长L1=0.5 m,ad边长L2=0.3 m,小灯泡的电阻R=9.0 Ω,磁场的磁感应强度B=1.0×10-2 T。线圈以理想边界OO′为轴以角速度ω=200 rad/s按如图所示的方向匀速转动(OO′轴离ab边距离为L2),以如图所示位置为计时起点。求:

(1)在0~的时间内,通过小灯泡的电荷量;
(2)在右图中画出感应电动势e随时间t变化的图像(以abcda方向为正方向,至少画出一个完整的周期);

(3)小灯泡消耗的电功率。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图为某同学设计的速度选择装置,两根足够长的光滑导轨MM/和NN/间距为L与水平面成θ角,上端接滑动变阻器R,匀强磁场B0垂直导轨平面向上,金属棒ab质量为m恰好垂直横跨在导轨上。滑动变阻器R两端连接水平放置的平行金属板,极板间距为d,板长为2d,匀强磁场B垂直纸面向内。粒子源能发射沿水平方向不同速率的带电粒子,粒子的质量为m0,电荷量为q,ab棒的电阻为r,滑动变阻器的最大阻值为2r,其余部分电阻不计,不计粒子重力。

(1)ab棒静止未释放时,某种粒子恰好打在上极板中点P上,判断该粒子带何种电荷?该粒子的速度多大?
(2)调节变阻器使R=0.5r,然后释放ab棒,求ab棒的最大速度?
(3)当ab棒释放后达到最大速度时,若变阻器在r≤R≤2r范围调节,总有粒子能匀速穿过平行金属板,求这些粒子的速度范围?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,间距l=1m的平行金属导轨分别固定在两个竖直面内,在水平面区域内和倾角的斜面区域内分别有磁感应强度方向竖直向上和磁感应强度、方向垂直于斜面向上的匀场磁场。电阻、质量的相同导体杆PQ、MN分别垂直放置在导轨上,PQ杆的两端固定在导轨上,离b1b2的距离s=0. 5m。MN杆可沿导轨无摩擦滑动且与导轨始终接触良好,当MN杆沿由静止释放沿导轨向下运动x=1m时达到最大速度。不计导轨电阻。取g=10m/s2,求:

(1)当MN杆达到最大速度时,流过PQ杆的电流大小和方向;
(2)从MN杆开始运动直到达到最大速度的过程中,PQ杆中产生的焦耳热;
(3)若保持B2不变,使B1发生变化,要使MN杆一直静止在倾斜轨道上,则B1随时间如何变化?其变化率多大?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,两条互相平行的光滑金属导轨位于水平面内,距离为L=0.2米,在导轨的一端接有阻值为R=0.5欧的电阻,在0处有一与水平面垂直的均匀磁场,磁感强度B=0.5T,一质量为m=0.1千克的金属杆垂直放置在导轨上,并以v0=2米/秒的初速度进入磁场,在安培力和一垂直于杆的水平外力F的共同作用下做匀变速直线运动,加速度大小为a=2米/秒2、方向与初速度方向相反,设导轨和金属杆的电阻都可以忽略,且接触良好,求:

(1)电流为零时金属杆所处的位置;
(2)电流为最大值的一半时施加在金属杆上外力F的大小和方向;
(3)保持其它条件不变,而初速度v0取不同值,求开始时F的方向与初速度v0取值的关系。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,在匀强磁场中竖直放置两条足够长的平行金属导轨,磁场方向与导轨所在平面垂直,磁感应强度大小为B0.导轨上端连接一阻值为R的电阻和开关K,导轨电阻不计,两金属棒a和b的电阻都为R,质量分别为ma="0.02" kg和mb="0.01" kg,它们与导轨接触良好,并可沿导轨无摩擦地运动.若将b棒固定,断开开关K,将一竖直向上的恒力作用于a,稳定时a棒以v=10  m/s的速度向上匀速运动,此时再释放b棒,b棒恰能保持静止,取g=10  m/s2,求:

(1)若将a棒固定,开关K闭合,让b棒从静止开始自由下滑,求b棒滑行的最大速度;
(2)若将a、b棒都固定,断开开关K,使匀强磁场的磁感应强度在0.1 s内从B0随时间均匀增大到2B0时,a棒所受到的安培力恰好等于它的重力,求两棒间的距离.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,AB和CD是足够长的平行光滑导轨,其间距为l,导轨平面与水平面的夹角为θ.整个装置处在磁感应强度为B、方向垂直于导轨平面向上的匀强磁场中.AC端连有电阻值为R的电阻.若将一质量为M,垂直于导轨的金属棒EF在距BD端s处由静止释放,在EF棒滑至底端前会有加速和匀速两个运动阶段.今用大小为F、方向沿斜面向上的恒力把EF棒从BD位置由静止推至距BD端s处,突然撤去恒力F,棒EF最后又回到BD端.(金属棒、导轨的电阻均不计)求:

(1)EF棒下滑过程中的最大速度.
(2)EF棒自BD端出发又回到BD端的整个过程中,有多少电能转化成了内能?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,足够长的平行金属导轨MN、PQ平行放置,间距为L,与水平面成θ角,导轨与固定电阻R1和R2相连,且R1=R2=R.R1支路串联开关S,原来S闭合,匀强磁场垂直导轨平面斜向上.有一质量为m的导体棒ab与导轨垂直放置,接触面粗糙且始终接触良好,导体棒的有效电阻也为R.现让导体棒从静止释放沿导轨下滑,当导体棒运动达到稳定状态时速率为v,此时整个电路消耗的电功率为重力功率的3/4.重力加速度为g,导轨电阻不计.试求:

(1)在上述稳定状态时,导体棒中的电流I,以及磁感应强度B的大小;
(2)当断开开关S后,导体棒ab所能达到的最大速率v′是v的多少倍?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图甲所示,空间存在B="0.5" T、方向竖直向下的匀强磁场,MN、PQ是放在同一水平面内的平行长直导轨,其间距L="0.2" m,R是连在导轨一端的电阻,ab是跨接在导轨上质量m="0.1" kg的导体棒.从零时刻开始,对ab施加一个大小为F="0.45" N、方向水平向右的恒定拉力,使其从静止开始沿导轨运动,此过程中棒始终保持与导轨垂直且良好接触,图乙是棒的速度—时间关系图象,其中AO是图象在O点的切线,AB是图象的渐近线.

(1)除R以外,其余部分的电阻均不计,求R的阻值;
(2)当棒的位移为100 m时,其速度已经达到10 m/s,求此过程中电阻上产生的热量.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

均匀导线制成的单匝正方形闭合线框abcd,每边长为L,总电阻为R,总质量为m.将其置于磁感强度为B的水平匀强磁场上方h处,如图所示.线框由静止自由下落,线框平面保持在竖直平面内,且cd边始终与水平的磁场边界面平行.当cd边刚进入磁场时,

(1)求线框中产生的感应电动势大小;
(2)求cd两点间的电势差大小;
(3)若此时线框加速度恰好为零,求线框下落的高度h所应满足的条件.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图7所示,水平U形光滑框架,宽度为1m,电阻忽略不计,导体杆ab质量是0.2kg,电阻是0.1,匀强磁场的磁感应强度B=0.1T,方向垂直框架向上,现用1N的外力F由静止拉动ab杆,当ab的速度达到1m/s时,求此时刻:
(1)ab杆产生的感应电动势的大小;
(2)ab杆的加速度的大小?
(3)ab杆所能达到的最大速度是多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,顶角为90°的光滑金属导轨MON固定在水平面上,导轨MONO的长度相等,MN两点间的距离l=2m,整个装置处于磁感应强度大小B=0.5T、方向竖直向下的匀强磁场中。一根粗细均匀、单位长度电阻值r=0.5Ω/m的导体棒在垂直于棒的水平拉力作用下,从MN处以速度v=2m/s沿导轨向右匀速滑动,导体棒在运动过程中始终与导轨接触良好,不计导轨电阻,求:

⑴导体棒刚开始运动时的电流;
⑵导体棒刚开始运动时所受水平拉力F的大小;
⑶开始运动后0.2s内通过导体棒的电荷量q

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中物理法拉第电磁感应定律计算题