高中物理

如图所示是某直流电路中电压随电流变化的图像,其中a、b分别表示路端电压、负载电阻上电压随电流变化的情况,下面说法正确的是              (   )

A.阴影部分的面积表示电源的输出功率
B.阴影部分的面积表示电源的内阻上消耗的功率
C.当满足α=β时,电源的效率最高
D.当满足α=β时,电源的效率小于50%
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,在金属线框的下方有一磁感应强度为B的匀强磁场区域,MN和M′N′是匀强磁场区域的水平边界,边界的宽度为S,并与线框的bc边平行,磁场方向与线框平面垂直.现让金属线框由距MN的某一高度从静止开始下落,图乙是金属线框由开始下落到完全穿过匀强磁场区域的v-t图象(其中OA、BC、DE相互平行)。已知金属线框的边长为L(L<S)、质量为m,电阻为R,当地的重力加速度为g,图象中坐标轴上所标出的字母v1、v2、t1、t2、t3、t4均为已知量.(下落过程中bc边始终水平)根据题中所给条件,以下说法正确的是:

A.t2是线框全部进入磁场瞬间,t4是线框全部离开磁场瞬间
B.从bc边进入磁场起一直到ad边离开磁场为止,感应电流所做的功为mgS
C.V1的大小可能为
D.线框穿出磁场过程中流经线框横截面的电荷量比线框进入磁场过程中流经框横截面的电荷量多

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图甲,电阻为R=2的金属线圈与一平行粗糙轨道相连并固定在水平面内,轨道间 距为d =0.5m,虚线右侧存在垂直于纸面向里的匀强磁场,磁感应强度为B1=0.1T,磁场内外分别静置垂直于导轨的金属棒P和Q,其质量m1=m2= 0.02kg,电阻R1=R2= 2.t=0时起对左侧圆形线圈区域施加一个垂直于纸面的交变磁场B2,使得线圈中产生如图乙所示的正弦交变电流(从M端流出时为电流正方向),整个过程两根金属棒都没有滑动,不考虑P和Q电流的磁场以及导轨电阻.取重力加速度g= l0m/s2

(1)若第1s内线圈区域的磁场B2正在减弱,则其方向应是垂直纸面向里还是向外?
(2)假设最大静摩擦力等于滑动摩擦力,金属棒与导轨间的滑动摩擦因数至少应是多少?
(3)求前4s内回路产生的总焦耳热.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,两条金属导轨相距L=1m,水平部分处在竖直向下的匀强磁场B1中,其中MN段平行于PQ段,位于同一水平面内,NN0段与QQ0段平行,位于与水平面成倾角37°的斜面内,且MNN0与PQQ0均在竖直平面内。在水平导轨区域和倾斜导轨区域内分别有垂直于水平面和斜面的匀强磁场B1和B2,且B1=B2=0.5T;ab和cd是质量均为m=0.2kg、电阻分别为Rab=0.5Ω和Rcd=1.5Ω的两根金属棒,ab置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,cd置于光滑的倾斜导轨上,均与导轨垂直且接触良好。从t=0时刻起,ab棒在水平外力F1作用下由静止开始以a=2m/s2的加速度向右做匀加速直线运动,cd棒在平行于斜面方向的力F2的作用下保持静止状态。不计导轨的电阻。水平导轨足够长,ab棒始终在水平导轨上运动,已知sin37°=0.6,cos37°=0.8,g=10m/s2。求:

(1)t=5s时,cd棒消耗的电功率;
(2)从t=0时刻起,2.0s内通过ab棒的电荷量q;
(3)规定图示F1、F2方向作为力的正方向,分别求出F1、F2随时间t变化的函数关系;
(4)若改变F1和F2的作用规律,使ab棒的运动速度v与位移x满足v=0.4x,cd棒仍然静止在倾斜轨道上,求ab棒从静止开始到x=5m的过程中,F1所做的功。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(22分)两条彼此平行长为8m,宽L="0.5m" 的光滑金属导轨(导轨电阻不计)水平固定放置,导轨左端接阻值 R=2Ω的电阻,右端接阻值 RL=4Ω的小灯泡,如左图所示.在导轨的 MNQP矩形区域内有竖直向上的匀强磁场d="2m" , 磁场的变化如右图所示.在t=0时,用水平恒力 F 拉金属杆使它由静止 开始从 GH 运动到PQ ,这过程中小灯泡的亮度一直没有变化.金属杆电阻r=2Ω求:

(1) 通过灯泡L的电流大小;
(2)金属棒进入磁场的速度 ;
(3)整个过程电路产生的热量。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

一白炽灯泡的额定功率与额定电压分别为。若把此灯泡接到输出电压为的电源两端,则灯泡消耗的电功率(

A. 等于 B. 小于 ,大于
C. 等于 D. 小于
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(19分)
(1)1920年科学家史特恩测定气体分子速率的装置如题22图1所示,AB为一双层共轴圆筒形容器,外筒半径为R,内筒半径为r,可同时绕其共同轴以同一角速度w高速旋转,其内部抽成真空.沿共同轴装有一根镀银的铂丝K,在铂丝上通电使其加热,银分子(即原子)蒸发成气体,其中一部分分子穿过A筒的狭缝a射出到达B筒的内表面.由于分子由内筒到达外筒需要一定时间,若容器不动,这些分子将到达外筒内壁上的b点,若容器转动,从a穿过的这些分子仍将沿原来的运动方向到达外筒内壁,但容器静止时的b点已转过弧长s到达点.测定该气体分子最大速度的大小表达式为v =_________.

(2)某同学在研究灯泡的电阻随灯泡两端电压增大而变化的实验中,用伏安法分别测出AB两个灯泡的伏安特性曲线如题22图2所示.
①若用多用表欧姆档测A灯的电阻,其阻值约为_____Ω.
②若将B灯接在电动势为16V,内阻为4Ω的电源两端,B灯的实际功率为_____W.
③若将A灯和B灯并联接在上述电源两端,B灯的实际功率为_____W.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

利用水流和太阳能发电,可以为人类提供清洁能源。水的密度,太阳光垂直照射到地面上时的辐射功率,地球表面的重力加速度取g=10m/s2
(1)三峡水电站发电机输出的电压为18kV。若采用500kV直流电向某地区输电5.0×106kW,要求输电线上损耗的功率不高于输送功率的5%,求输电线总电阻的最大值;
(2)发射一颗卫星到地球同步轨道上(轨道半径约为地球半径的6.6)利用太阳能发电,然后通过微波持续不断地将电力输送到地面,这样就建成了宇宙太阳能发电站。求卫星在地球同步轨道上向心加速度的大小;
(3)三峡水电站水库面积约1.0×109m2,平均流量Q=1.5×l04m3/s,水库水面与发电   机所在位置的平均高度差h=l00m,发电站将水的势能转化为电能的总效率。在地球同步轨道上,太阳光垂直照射时的辐射功率为10P0。太阳能电池板将太阳能转化为电能的效率=20%,将电能输送到地面的过程要损失50%。若要使(2)中的宇宙太阳能发电站的发电能力与三峡电站相当,卫星上太阳能电池板的面积至少为影大?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示为一建筑工地为吊装材料用的卷扬机模型,可简化为:用原、副线圈的匝数比为n的理想变压器,给原线圈接电压为u=U0sinωt的正弦交流电,输出端接有一个交流电流表和一个电动机,电动机的线圈电阻为R.当输入端接通电源后,电动机带动一质量为m的重物匀速上升,此时电流表的示数为I,重力加速度为g,下列说法正确的是:

A.电动机两端电压为IR
B.原线圈中的电流为nI
C.电动机消耗的电功率为
D.重物匀速上升的速度为
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,在水平匀速运动的传送带的左端(P点),轻放一质量为m=1kg的物块,物块随传送带运动到A点后抛出,物块恰好无碰撞地沿圆弧切线从B点进入竖直光滑圆弧轨道下滑。BD为圆弧的两端点,其连线水平已知圆弧半径R=1.0m,圆弧对应的圆心角θ=106º,轨道最低点为CA点距水平面的高度h=0.80m.(g取10m/s2,sin53º=0.8,cos53º=0.6)求:
(1)物块离开A点时水平初速度的大小;
(2)物块经过C点时对轨道压力的大小;
(3)设物块与传送带间的动摩擦因数为0.3,传送带匀速运动的速度为5m/s,求物块从P点运动至A点过程中电动机多消耗的电能。

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示的电路中,输入电压U恒为12 V,灯泡L标有“6 V,12 W”字样,电动机线圈的电阻RM="0.50" Ω.若灯泡恰能正常发光,以下说法中正确的是(   )

A.流经电动机的电流是12A
B.电动机的输出功率12 W
C.电动机的输出功率是10 W
D.电动机的热功率是72 W
来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,电动势为E、内阻不计的电源与三个灯泡和三个电阻相接.只合上开关S1,三个灯泡都能正常工作.如果再合上S2,则下列表述正确的是

A.电源输出功率增大 B.L1上消耗的功率增大
C.通过R1上的电流增大 D.通过R3上的电流增大
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在如图A所示电路中,电源电动势为E = 6V,内阻不计,小灯L上标有“6V,0.3A”字样,滑动变阻器R1的阻值范围是0~20Ω,电阻R2上标有“15Ω,4A”字样,电流表的量程为0~0.6A。

甲、乙两同学在讨论滑动变阻器功率的取值范围时,甲同学认为:由于电流表允许通过的最大电流为0.6A,所以通过R1的最大电流为  I1m = IAmIL =" 0.6A–0.3A" = 0.3A,这时滑动变阻器R1两端的电压为  U1m = EI1m R2 = 6V-0.3×15V =" 1.5V" ,因此, 滑动变阻器的最大功率为   P1m = I1m U1m=" 0.3×1.5W" = 0.45W。
乙同学不同意甲同学的看法,他认为滑动变阻器的功率决定于通过它的电流和它两端电压的乘积,即P1 = I1 U1,电流最大时功率未必最大,只有电流、电压的乘积最大时,功率才最大,如图B所示。
你认为甲、乙两位同学中,哪位同学的看法正确,如果你认为甲同学正确,请简述他正确的理由;如果你认为乙同学正确,请求出滑动变阻器R1的最大功率P1m

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图甲所示,电阻不计的光滑平行金属导轨固定在水平面上,导轨间距L="0.5" m,左端连接R="0.5" Ω的电阻,右端连接电阻不计的金属卡环。导轨间MN右侧存在方向垂直导轨平面向下的磁场.磁感应强度的B-t图象如图乙所示。电阻不计质量为m="1" kg的金属棒与质量也为m的物块通过光滑滑轮由绳相连,绳始终处于绷紧状态。PQ、MN到右端卡环距离分别为17.5 m和15 m。t=0时刻由PQ位置静止释放金属棒,金属棒与导轨始终接触良好,滑至导轨右端被卡环卡住不动。(g取10 m/s2)求:

(1)金属棒进入磁场时受到的安培力
(2)在0~6 s时间内电路中产生的焦耳热

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

有一起重机用的直流电动机,如图7-2-8所示,其内阻r=0.8Ω,线路电阻R=10Ω,电源电压U=150V,电压表示数为110V,求:
(1)通过电动机的电流;
(2)输入到电动机的功率P
(3)电动机的发热功率Pr,电动机输出的机械功率.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中物理焦耳定律试题