滑雪者从A点由静止沿斜面滑下,A点距地面高度为H。沿一平台后水平飞离B点,地面上紧靠平台有一个水平台阶,空间几何尺度如图所示,斜面、平台与滑雪板之间的动摩擦因数为μ.假设滑雪者由斜面底端进入平台后立即沿水平方向运动,且速度大小不变.求:
滑雪者离开B点时的速度大小;
滑雪者从B点开始做平抛运动的水平距离s.
倾斜雪道的长为25 m,顶端高为15 m,下端与很长的水平雪道相接,如图所示。一质量为50Kg的滑雪运动员在倾斜雪道的顶端以水平速度v0=8 m/s飞出,在落到倾斜雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿斜面的分速度而不弹起。除缓冲外运动员可视为质点,求:
运动员在空中飞行的时间;
若运动员落到斜坡上顺势屈腿以缓冲,使他垂直于斜坡的速度在t=0.50s的时间内减小为零,此斜面对运动员垂直弹力的平均值大小为多少?
一置于桌面上质量为M的玩具炮,水平发射质量为m的炮弹.炮可在水平方向自由移动.当炮身上未放置其他重物时,炮弹可击中水平地面上的目标A;当炮身上固定一质量为M0的重物时,在原发射位置沿同一方向发射的炮弹可击中水平地面上的目标B.炮口离水平地面的高度为h.如果两次发射时“火药”提供的机械能相等,求B、A两目标与炮弹发射点之间的水平距离之比.
半径R=20cm的竖直放置的圆轨道与平直轨道相连接,如图9所示。质量m=50g的小球A以一定的初速度由直轨道向左运动,并沿圆轨道的内壁冲上去。如果球A经过N点时速度v1=4m/s,球A经过轨道最高点M时对轨道的压力为0.5N,取g=10m/s2,求:
(1)小球落地点P与N之间的距离?
(2)小球从N运动到M这一段过程中克服阻力做的功?
如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R,MN 为直径且与水平面垂直,直径略小于圆管内径的小球A 以某一速度冲进轨道,到达半圆轨道最高点M 时与静止于该处的质量与A 相同的小球B发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 为2R。重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求:
⑴粘合后的两球从飞出轨道到落地的时间t;
⑵小球A 冲进轨道时速度的大小。
(8分)如图所示,水平地面上有一个坑,其竖直截面为半圆,O为圆心,且B为沿水平方向的直径。若在A点以初速度v1沿AB方向平抛一小球,小球将击中坑壁上的最低点D;而在C点以初速度v2沿BA方向平抛的小球也能击中D点。已知∠COD=600,求两小球初速度之比v1:v2。(小球视为质点)
某战士在倾角θ = 30°的山坡上进行投掷手榴弹训练。他从A点以某一初速度υ0沿水平方向投出手榴弹,正好落在B点,测得AB = 90m。设空气阻力不计,取重力加速度g = 10m/s2。
(1)该型号手榴弹从拉动弹弦到爆炸需要T = 5s的时间,若要求手榴弹正好在落地时爆炸,求战士从拉动弹弦到投出所用的时间△t;
(2)求手榴弹抛出的初速度υ0大小。
在游乐节目中,选手需要借助悬挂在高处的绳飞越到水面的浮台上。如图所示,将选手简化为质量m=60kg的质点,选手抓住绳由静止开始摆动,此时绳与竖直方向夹角,绳的悬挂点O距水面的高度为H=3.25m.,绳长l=2m,悬挂点O与浮台的水平距离为x=3m,不考虑空气阻力和绳的质量,浮台露出水面的高度不计。取重力加速度,,。求:
(1)求选手摆到最低点时对绳拉力的大小;
(2)若选手摆到最低点时松手,选手能否落在浮台上?
如图所示,一水平光滑、距地面高为h、边长为a的正方形MNPQ桌面上,用长为L的不可伸长的轻绳连接质量分别为mA、mB的A、B两小球,两小球在绳子拉力的作用下,绕绳子上的某点O以不同的线速度做匀速圆周运动,圆心O与桌面中心重合,已知mA=0.5 kg,L=1.2 m,LAO=0.8 m,a=2.1 m,h=1.25 m,A球的速度大小vA=0.4 m/s,重力加速度g取10 m/s2,求:
(1)绳子上的拉力F以及B球的质量mB;
(2)若当绳子与MN平行时突然断开,则经过1.5 s两球的水平距离;
(3)两小球落至地面时,落点间的距离.
如图所示,长度为L、倾角θ=30°的斜面AB,在斜面顶端B向左水平抛出小球1、同时在底端A正上方某高度处水平向右抛出小球2,小球2垂直撞在斜面上的位置P,小球1也同时落在P点。求两球平抛的初速度v1、v2和BD间距离h。
如图所示,一光滑的曲面与长L =" 2" m的水平传送带左端平滑连接,一滑块从曲面上某位置由静止开始下滑,滑块与传送带间的动摩擦因数μ= 0.5.传送带离地面的高度h0 =" 0.8" m。现让滑块从曲面上离传送带高度h1 =" 1.8" m的A处开始下滑,则:
(l)若传送带固定不动,求滑块落地点与传送带右端的水平距离;
(2)若传送带以速率V0 =" 5" m/s顺时针匀速带动,求滑块在传送带上运动的时间
如图所示,小洁将小球甲从空中A点以=3m/s的速度竖直向下抛出,同时小明将另一小球乙从A点正下方H=10m的B点以=4m/s的速度水平抛出,不计空气阻力,B点离地面足够高,求两球在空中的最短距离。
高台滑雪运动员经过一段滑行后从斜坡上O点水平飞出,斜坡与水平面的夹角θ=37°,运动员连同滑雪板的总质量m=50kg,他落到了斜坡上的A点,A点与O点的距离s=12m,如图所示。忽略斜坡的摩擦和空气阻力的影响,重力加速度g=10m/s2。
(sin37°=0.60;cos37°=0.80)
(1)运动员在空中飞行了多长时间?
(2)求运动员离开O点时的速度大小。
(3)运动员落到斜坡上顺势屈腿以缓冲,使他垂直于斜坡的速度在t=0.50s的时间内减小为零,设缓冲阶段斜坡对运动员的弹力可以看作恒力,求此弹力的大小。
如图所示,竖直平面内的一半径R=0.50m的光滑圆弧槽BCD,B点与圆心O等高,一水平面与圆弧槽相接于D点。质量m=0.10kg的小球从B点正上方H=0.95m高处的A点自由下落,由B点进入圆弧槽轨道,从D点飞出后落在水平面上的Q点,DQ间的距离s=2.4m,球从D点飞出后的运动过程中相对水平面上升的最大高度h=0.80m,取g=10m/s2,不计空气阻力,求:
(1)小球经过C点时轨道对它的支持力大小N;
(2)小球经过最高点P的速度大小vP;
(3)D点与圆心O的高度差hOD。
如图所示,在xoy平面内,MN和x轴之间有平行于y轴的匀强电场和垂直于xoy平面的匀强磁场,y轴上离坐标原点3L的A点处有一电子枪,可以沿+x方向射出速度为v0的电子(质量为m,电量为e)。如果电场和磁场同时存在,电子将做匀速直线运动.如果撤去磁场只保留电场,电子将从P点离开电场,P点的坐标是(2L,5L).不计重力的影响,求:
(1)电场强度E和磁感应强度B的大小及方向;
(2)如果撤去电场,只保留磁场,电子将从x轴上的D点(图中未标出)离开磁场,求D点的坐标及电子在磁场中运动的时间.