高中数学

(本小题满分12分) 已知
(1)当a=0时,求f(x)的极值;
(2)当a>0时,讨论f(x)的单调性;
(3)若对任意的a∈(2, 3),x1, x2∈[1, 3],恒有(m-ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

.
(1)当取到极值,求的值;
(2)当满足什么条件时,在区间上有单调递增的区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数(是常数)在处的切线方程为,且.
(1)求常数的值;
(2)若函数()在区间内不是单调函数,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知对任意的实数,直线都不与曲线相切.
(1)求实数的取值范围;
(2)当时,函数的图象上是否存在一点,使得点轴的距离不小于.试证明你的结论.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数),).
(Ⅰ)若函数处的切线方程为,求实数的值;
(Ⅱ)求的单调减区间;
(Ⅲ)当时,若对任意的,存在,使得,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题12分)已知函数
(Ⅰ)若在点()处的切线方程为,求实数的值;
(Ⅱ)当时,讨论的单调性;
(Ⅲ)当时,在区间上恰有一个零点,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(1)已知函数,过点P的直线与曲线相切,求的方程;
(2)设,当时,在1,4上的最小值为,求在该区间上的最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数).
⑴ 若函数的图象在点处的切线的倾斜角为,求上的最小值;
⑵ 若存在,使,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数在点处的切线方程为
(Ⅰ)求的解析式;
(Ⅱ)求的单调区间;
(Ⅲ)若在区间内,恒有成立,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知的图像过原点,且在点处的切线与轴平行,对任意,都有.
(1)求函数在点处切线的斜率;
(2)求的解析式;
(3)设,对任意,都有.求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数为常数).
(1)若是函数的一个极值点,求的值;
(2)当时,试判断的单调性;
(3)若对任意的,使不等式恒成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)当a=2时,求曲线在点处的切线方程;
(2)求函数的极值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数f(x)=k(x﹣1)ex+x2
(Ⅰ)当时k=﹣,求函数f(x)在点(1,1)处的切线方程;
(Ⅱ)若在y轴的左侧,函数g(x)=x2+(k+2)x的图象恒在f(x)的导函数f′(x)图象的上方,求k的取值范围;
(Ⅲ)当k≤﹣l时,求函数f(x)在[k,1]上的最小值m.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(1)求函数的单调区间;
(2)当时,过原点分别作曲线的切线,已知两切线的斜率互为倒数,证明:
(3)设,当时,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,若在区间上的最小值为,其中是自然对数的底数,
求实数的取值范围;

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学组合几何解答题