设
的导数
满足
,其中常数
.
(Ⅰ)求曲线
在点
处的切线方程.
(Ⅱ)设
.求函数
的极值.
已知函数,(为常数).
(1)函数的图象在点处的切线与函数的图象相切,求实数的值;
(2)若,,、使得成立,求满足上述条件的最大整数;
(3)当时,若对于区间内的任意两个不相等的实数、,都有
成立,求的取值范围.
已知函数,为常数.
(1)若函数在处的切线与轴平行,求的值;
(2)当时,试比较与的大小;
(3)若函数有两个零点、,试证明.
设函数.
(1)当时,求函数在区间内的最大值;
(2)当时,方程有唯一实数解,求正数的值.
已知函数,.
(1)已知区间是不等式的解集的子集,求的取值范围;
(2)已知函数,在函数图像上任取两点、,若存在使得恒成立,求的最大值.
已知函数.
(Ⅰ),使得函数在的切线斜率,求实数的取值范围;
(Ⅱ)求的最小值.
已知函数,,且在点处的切线方程为.
(1)求的解析式;
(2)求函数的单调递增区间;
(3)设函数若方程恰四个不同的解,求实数的取值范围.
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N +),其中xn为正实数.
(1)用xn表示xn+1;
(2)若x1=4,记an=lg,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(3)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
已知曲线:
(1)试求曲线在点处的切线方程;
(2)试求与直线平行的曲线C的切线方程.
已知函数.
(1)若在处的切线与直线垂直,求的单调区间;
(2)求在区间上的最大值.
已知函数
(1)若,求曲线在处的切线方程;
(2)求的单调区间;
(3)设,若对任意,均存在,使得,求的取值范围.
已知函数在点处的切线方程为.
(1)求、的值;
(2)当时,恒成立,求实数的取值范围;
(3)证明:当,且时,.
已知函数,(其中常数)
(1)当时,求曲线在处的切线方程;
(2)若存在实数使得不等式成立,求的取值范围.