高中数学

(本小题满分12分)已知函数=,(其中,无理数=2.71828 )
(Ⅰ)若=1时,求曲线=在点(1,)处的切线方程;
(Ⅱ)当≥2时,≥0,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题满分13分)已知函数(a、b为常数).
(1)求函数在点(1,)处的切线方程;
(2)当函数g(x)在x=2处取得极值-2.求函数的解析式;
(3)当时,设,若函数在定义域上存在单调减区间,求实数b的取值范围;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知函数其中为常数,函数的图象在它们与坐标轴交点的切线互相平行.
(1)求函数的单调区间;
(2)若不等式在区间上恒成立,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

己知函数,其中 
(1)求函数的单调区间;
(2)若直线x-y-l=0是曲线y=的切线,求实数的值;
(3)设,求g(x)在区间上的最大值(其中e为自然对数的底数)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知抛物线过点,且在点处与直线相切,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)已知函数f(x)=(1+x)lnx.
(1)求函数f(x)在x=1处的切线方程;
(2)设g(x)=,对任意x∈(0,1),都有g(x)<-2,求实数a的取值范围;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数,曲线过点P(1,0),且在P点处的切线的斜率为2,
(1)求的值。
(2)证明: 

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数为无理数,
(1)求函数在点处的切线方程;
(2)设实数,求函数上的最小值;
(3)若为正整数,且对任意恒成立,求的最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知
(1)若,求曲线在点处的切线方程;
(2)若 求函数的单调区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数f(x)=-ax,g(x)=b+2b-1.
(1)若曲线y=f(x)与y=g(x)在它们的交点(1,c)处有相同的切线,求实数a,b的值;
(2)当a=1,b=0时,求函数h(x)=f(x)+g(x)在区间[t,t+3]内的最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,曲线上点处的切线方程为.
(1)若时有极值,求的表达式;
(2)在(1)的条件下求上的最值及相应的的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)设,且曲线处的切线与轴平行
(1)求的值,并讨论的单调性;
(2)证明:当时,

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的图象在点处的切线的斜率为2.
(Ⅰ)求实数的值;
(Ⅱ)设,讨论的单调性;
(Ⅲ)已知,证明:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数∈R). 
(1)若,求点()处的切线方程;
(2)设a≤0,求的单调区间;
(3)设a<0,且对任意的,试比较的大小.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数(m,n为常数,…是自然对数的底数),曲线在点处的切线方程是
(1)求m,n的值;
(2)求的单调区间;
(3)设(其中的导函数),证明:对任意

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学组合几何解答题