某汽车启动阶段的位移函数为s(t)=2t3﹣5t2,则汽车在t=2时的瞬时速度为( )
A.10 | B.14 | C.4 | D.6 |
(本小题满分14分)已知函数f(x)=,曲线y=f(x)在点(1,f(1))处的切线方程为x+(e–1)2y–e=0.其中e =2.71828 为自然对数的底数.
(Ⅰ)求a,b的值;
(Ⅱ)如果当x≠0时,f(2x)<,求实数k的取值范围.
已知函数(为无理数,)
(1)求函数在点处的切线方程;
(2)设实数,求函数在上的最小值;
(3)若为正整数,且对任意恒成立,求的最大值.
设函数f(x)=-ax,g(x)=b+2b-1.
(1)若曲线y=f(x)与y=g(x)在它们的交点(1,c)处有相同的切线,求实数a,b的值;
(2)当a=1,b=0时,求函数h(x)=f(x)+g(x)在区间[t,t+3]内的最小值.
【改编】设曲线在点处的切线方程为,则的值依次为( )
A. | B. |
C. | D. |
已知函数,其中为常数.
(1)若,求曲线在点处的切线方程;
(2)若,求证:有且仅有两个零点;
(3)若为整数,且当时,恒成立,求的最大值.