以表示值域为的函数组成的集合,表示具有如下性质的函数组成的集合:对于函数,存在一个正数,使得函数的值域包含于区间.例如,当,
时,,.现有如下命题:
①设函数的定义域为,则“”的充要条件是“,,”;
②函数的充要条件是有最大值和最小值;
③若函数,的定义域相同,且,,则;
④若函数(,)有最大值,则.
其中的真命题有 (写出所有真命题的序号)
函数的定义域为A,若且时总有,则称 为单函数.例如,函数是单函数.下列命题:
①函数是单函数;②函数是单函数;
③若为单函数, 且,则;
④若函数在定义域内某个区间D上具有单调性,则一定是单函数.
其中真命题是 (写出所有真命题的编号).
设命题p:非零向量a,b,|a|=|b|是(a+b)⊥(a-b)的充要条件;命题q:平面上M为一动点,A,B,C三点共线的充要条件是存在角α,使=sin2α+cos2α,下列命题①p∧q;②p∨q;③¬p∧q;④¬p∨q.
其中假命题的序号是________.(将所有假命题的序号都填上)
给出以下四个命题:
①已知命题;命题.则命题是真命题;
②命题“若,则有实根”的逆否命题;
③命题“面积相等的三角形全等”的否命题;
④命题的逆命题.
其中正确命题的序号为___________.(把你认为正确的命题序号都填上)
关于函数有下列命题:①函数的图像关于y轴对称;②在区间(-∞,0)上,函数是减函数;③函数的最小值为lg2;④在区间(1,+∞)上,函数是增函数。其中是真命题的序号为 。
给出以下四个命题:
①为了解600名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑用系统抽样,则分段的间隔k为30;
②已知是空间四点,命题甲:四点不共面,命题乙:直线和不相交,则甲是乙成立的充分不必要条件;
③对分类变量X与Y的随机变量k2的观测值k来说,k越小,判断“X与Y有关系”的把握程度越大.
④若双曲线的渐近线方程为,则k=1.其中真命题的序号是 .
定义在上的函数,其图象是连续不断的,如果存在非零常数(),使得对任意的,都有,则称为“倍增函数”,为“倍增系数”,
下列命题为真命题的是_ __(写出所有真命题对应的序号).
①若函数是倍增系数的倍增函数,则至少有1个零点;
②函数是倍增函数,且倍增系数;
③函数是倍增函数,且倍增系数 ;
④.
下列说法正确的是 .(填上所有正确答案的序号)
①;
② 任何集合都有子集;
③ 实数没有共轭复数;
④ 命题“正三角形的三条边全相等.”的逆否命题是“如果一个三角形的三条边全不相等,那么这个三角形不是正三角形.”
下列4个命题:
①“如果,则、互为相反数”的逆命题
②“如果,则”的否命题
③在△ABC中,“”是“”的充分不必要条件
④“函数为奇函数”的充要条件是“”
其中真命题的序号是 .
若命题“存在,使得成立”为假命题,则实数的取值范围是 .