设命题p:关于x的不等式2|x-2|<a的解集为;命题q:函数y=lg(ax2-x+a)的值域是R.如果命题p和q有且仅有一个正确,求实数a的取值范围.
已知命题p:函数y=loga(1-2x)在定义域上单调递增;命题q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立.若p∨q是真命题,求实数a的取值范围.
已知命题p:方程2x2+ax-a2=0在[-1,1]上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0,若命题“p∨q”是假命题,求a的取值范围.
设命题p:函数的定义域为R;命题q:不等式对一切实数均成立。
(1)如果p是真命题,求实数的取值范围;
(2)如果命题“p或q”为真命题,且“p且q”为假命题,求实数的取值范围。
已知函数.设方程有实数根;函数在区间上是增函数.若和有且只有一个正确,求实数的取值范围.
已知命题:方程有两个不等的负实根,命题:方程无实根.若为真,为假,求实数的取值范围.
设命题:方程无实数根;命题:函数的值域是.如果命题为真命题,为假命题,求实数的取值范围。