已知函数,,设.
(1)求的单调区间;
(2)若以图象上任意一点为切点的切线的斜率
恒成立,求实数的最小值.
(3)是否存在实数,使得函数的图象与的图
象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由.
已知函数.
(1)是否存在实数使函数f(x)为奇函数?证明你的结论;
(2)用单调性定义证明:不论取任何实数,函数f(x)在其定义域上都是增函数;
(3)若函数f(x)为奇函数,解不等式.
已知函数其中a>0,且a≠1,
(1)求函数的定义域;
(2)当0<a<1时,解关于x的不等式;
(3)当a>1,且x∈[0,1)时,总有恒成立,求实数m的取值范围.
已知函数的定义域为R,当时,,且对任意的实数R,等式成立.若数列满足,且
(N*),则的值为( )
A.4024 | B.4023 | C.4022 | D.4021 |
已知函数f(x)=ex+x.对于曲线y=f(x)上横坐标成等差数列的三个点A、B、C,给出以下判断:
①△ABC一定是钝角三角形;
②△ABC可能是直角三角形;
③△ABC可能是等腰三角形;
④△ABC不可能是等腰三角形.
其中,正确的判断是( )
A.①③ B.①④ C.②③ D.②④